Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T05:30:55.248Z Has data issue: false hasContentIssue false

In-depth analysis of the interfaces in InGaP/GaAs heterosystems

Published online by Cambridge University Press:  15 July 2004

C. Pelosi*
Affiliation:
IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43010 Loc. Fontanini, Parma, Italy
G. Attolini
Affiliation:
IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43010 Loc. Fontanini, Parma, Italy
C. Frigeri
Affiliation:
IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43010 Loc. Fontanini, Parma, Italy
M. Bersani
Affiliation:
ITC-IRST, via Sommarive 18, 38050 Povo, Trento, Italy
D. Giubertoni
Affiliation:
ITC-IRST, via Sommarive 18, 38050 Povo, Trento, Italy
L. Vanzetti
Affiliation:
ITC-IRST, via Sommarive 18, 38050 Povo, Trento, Italy
R. Kudela
Affiliation:
Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, SK-84239 Bratislava, Slovak Republik
Get access

Abstract

Different GaAs-matched epitaxial structures based on InGaP and InGaAlP layers were prepared by LP MOVPE. The suitable p- and n-type sequence of these layers will be used as active elements in high efficiency solar cells. The layers were grown on (001) GaAs substrates oriented 2° off towards (110) using trimethylgallium (TMG), trimethylaluminium (TMA), trimethylindium (TMI), arsine (AsH3) and phosphine (PH3) as main reagents and dimethylzinc (DMZ) and silane (SiH4) as p- and n-type doping reagents, respectively. The layers have been analyzed as regards their compositional homogeneity, interface abruptness and doping concentration by different techniques such as SIMS, TEM and AFM. The combined analysis of SIMS and TEM has been of great usefulness in order to define the abruptness of composition change. Moreover an analysis of autodoping effects is reported as regards the arsenic diffusion in InGaP matrix and the analysis of different samples is reported.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. G. Craford, MRS Bull. 27 (2000)
Park, J.-W., Mohammadi, S., Pavlidis, D., Dua, C., Guyaux, L., Garcia, J.-C., Solid-State Electron. 44, 2059 (2000) CrossRef
Karam, N. H., King, R. R., Haddad, M., Ermer, J. H., Yoon, H., Cotal, H. L., Sudharsanan, R., Eldredge, J. W., Edmondson, K., Joslin, D. E., Krut, D. D., Takahashi, M., Nishikawa, W., Gillanders, M., Granata, J., Hebert, P., Cavicchi, B. T., Lillington, D. R., Sol. Energy Mater. Solar Cells 66, 453 (2001) CrossRef
Modak, P., D'Hondt, M., Mijlemans, P., Moerman, I., Van Daele, P., Demeester, P., J. Electron. Mater. 29, 80 (2000) CrossRef
A. Zunger, MRS Bull. 20 (1997)
G. Attolini, P. Fallini, F. Germini, C. Pelosi, O. Martinez, L. F. Sanz, M. A. Gonzalez, J. Jimenez, Mat. Res. Soc. Symp. Proc. 692, MRS (2002)
Vogt, P., Ludge, K., Zorn, M., Pristovsek, M., Braun, W., Richter, W., Esser, N., Phys. Rev. B 62, 12601 (2000) CrossRef
Pietzonka, I., Franzheld, R., Sass, T., Benndorf, G., Schwabe, R., Handschuh, M., Gottschalch, V., J. Cryst. Growth 196, 33 (1999) CrossRef
Gates, D. J. , J. Cryst. Growth 180, 136 (1997) CrossRef
Hanna, M. C., Cheong, H. M., Mascarenhas, A., Appl. Phys. Lett. 76, 997 (2000) CrossRef
Stringfellow, G. B., Su, L. C., Strausser, Y. E., Thornton, J. T., Appl. Phys. Lett. 66, 3155 (1995) CrossRef
Meyer, D. C., Paufler, P., J. Appl. Cryst. 33, 252 (2000) CrossRef
Ishikawa, F., Hirama, A., Hasegawa, H., Jap. J. Appl. Phys. 40, 2769 (2001) CrossRef
Kúdela, R., Kucera, M., Nová, J., Ferrari, C., Pelosi, C., J. Cryst. Growth 242, 132 (2002) CrossRef
Frigeri, C., Attolini, G., Pelosi, C., Phys. Stat. Sol. 195, 56 (2003) CrossRef
Saitoh, T., Otoki, Y., Sasaki, Y., Washima, M., Hitachi Cable Rev. 19, 59 (2000)
Yang, Q., Kellogg, D. A., Lin, C., Stillman, G. E., Hoolonyak, N., Appl. Phys. Lett. 75, 1101 (1999) CrossRef