Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:24:00.582Z Has data issue: false hasContentIssue false

The hysteresis cycle of concentration in a solution droplet under changing humidity

Published online by Cambridge University Press:  11 July 2014

Vincenzo Malvestuto
Affiliation:
CNR ISAC Istituto di Scienze dell’Atmosfera e del Clima, Via Fosso del Cavaliere 100, 00133 Roma, Italy
Sergio Ascoli
Affiliation:
CNR ISAC Istituto di Scienze dell’Atmosfera e del Clima, Via Fosso del Cavaliere 100, 00133 Roma, Italy
Alessandra Sabina Lanotte*
Affiliation:
CNR ISAC Istituto di Scienze dell’Atmosfera e del Clima and INFN, Sez. Lecce, Str. Prov. Lecce-Monteroni, 73100 Lecce, Italy
*
Get access

Abstract

For a solution droplet in equilibrium with the atmospheric environment, a relationship exists between radius and concentration, which allows to express the saturation ratio of the droplet as a function of either one of these two parameters. The curves showing the complete behaviour of saturation ratio as a function of radius, for various sizes of NaCl nuclei, were previously presented for both wholly and partially dissolved salt. Here, the dependence of saturation ratio on droplet concentration, rather than on its radius, is examined and plotted for various NaCl nuclei. The occurrence of an analogous, but X-shaped, hysteresis phenomenon, characterizing the behaviour of the solution concentration in a growing-shrinking cycle of a solution droplet under changing humidity, is evidenced and discussed. An insoluble spherical core is assumed to be always present inside the condensation nucleus, so that the onset of the sudden salt re-crystallization is triggered at a well defined concentration value.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Köhler, H., Meddn St. Met-Hydrogr. Anst. 3, 8 (1926)
Chen, J.-P., J. Atmos. Sci. 51, 3505 (1994)2.0.CO;2>CrossRef
Wex, H., Stratmann, F., Topping, D., McFiggans, G., J. Atmos. Sci. 65, 4004 (2008)CrossRef
Ascoli, S., Malvestuto, V., Contrib. Atmos. Phys. 68, 381 (1995)
Orr, C., Hurd, F.K., Hendrix, W.P., Junge, C., J. Meteor. 15, 240 (1957)2.0.CO;2>CrossRef
Pruppacher, H., Klett, J., Microphysics of Clouds and Precipitation (Kluwer Academic Publ., Dordrecht, 1997)Google Scholar
Butt, H.-J., Graf, K., Kappl, M., Physics and Chemistry of Interfaces, 3rd edn. (Wiley, Weinheim, 2003)CrossRefGoogle Scholar
Facchini, M.C. et al., Atmos. Environ. 34, 4853 (2000)CrossRef
VanHook, A., Crystallization: Theory and Practice (Reinhold Publish. Corp., New York, 1961), p. 325 Google Scholar
Shahidzadeh-Bonn, N., Rafai, S., Bonn, D., Wegdam, G., Langmuir 24, 8599 (2008)CrossRef
Desarnaud, J., Shahidzadeh-Bonn, N., Europhys. Lett. 95, 48002 (2011)CrossRef
Mason, B.J., The Physics of Clouds (Clarendon Press, Oxford, 1971), p. 671 Google Scholar
Cohen, M.D., Flagan, R.C., Seinfeld, J.H., J. Phys. Chem. 91, 4563 (1987)CrossRef