Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T10:39:10.008Z Has data issue: false hasContentIssue false

Grain size reduction by electromagnetic stirring inside gold alloys

Published online by Cambridge University Press:  04 March 2005

R. Ernst
Affiliation:
Laboratoire CNRS-EPM, ENSHMG, BP 95, 38400 Saint-Martin-d'Hères Cedex, France
N. Mangelinck-Noël*
Affiliation:
Laboratoire L2MP, Université Paul Cézanne-Aix-Marseille III, Campus de Saint Jérôme, Service 142, 13397 Marseille Cedex 20, France
J. Hamburger
Affiliation:
Laboratoire CNRS-EPM, ENSHMG, BP 95, 38400 Saint-Martin-d'Hères Cedex, France
C. Garnier
Affiliation:
Laboratoire CNRS-EPM, ENSHMG, BP 95, 38400 Saint-Martin-d'Hères Cedex, France
P. Ramoni
Affiliation:
Metalor Technologies SA, Neuchâtel, Switzerland
Get access

Abstract

The final properties of cast materials depend greatly on the solidification process undergone by the material. In this paper, we study gold alloys dedicated to the watch industry and jewellery in the framework of a research collaboration with the Metalor Company. The aim is to improve the concentration homogeneity of the ingots by controlling the solidification step. It can be achieved by reducing segregations by a decrease in the grain size.For this purpose, we set up a multiphase electromagnetic stirring of the melt to favour the growth of finer grains and improve the homogeneity of the composition. We first design an electromagnetic stirrer by numerical simulation. The stirrer is then implemented on a model experiment. Eventually, the alloys are characterised by metallography and etching to evidence the grain structure. As expected, we obtain a substantial reduction of the grain size although, some work remains to be done to attain the final goal of even finer grains.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M.F. Ashby, D.R.H. Jones, Engineering Materials 1 and 2, 2nd edn. (Butterworth Heineman, Oxford, 1996/1998)
Gandin, Ch.A., Acta Mater. 48, 2483 (2000) CrossRef
Greer, A.L., Bunn, A.M., Tronche, A., Evans, P.V., Bristow, D.J., Acta Mater. 48, 2823 (2000) CrossRef
Desnain, P., Fautrelle, Y., Meyer, J.-L., Riquet, J.-P., Durand, F., Acta Metall. Mater. 38, 1516 (1990) CrossRef
G. Darmon, R. Ernst, in Electromagnetic Processing of Materials Symposium EPM-2000, 3-6 avril 2000, Nagoya, Japon, pp. 247–252
R. Ernst, in Électrotechnique du Futur EF'2001, 14-15 novembre 2001, Nancy, France, pp. 343–347
Hunt, J.D., Mater. Sci. Eng. 65, 75 (1984) CrossRef
Martorano, M.A., Beckermann, C., Gandin, C.-A., Metall. Mater. Trans. A 34A, 1657 (2003) CrossRef
Liu, S., Lu, S.-Z., Hellawell, A., J. Cryst. Growth 234, 740 (2002) CrossRef
Jackson, K.A., Hunt, J.D., Ulhman, D.R., Seward, T.P., Trans. Metall. Soc. AIME 236, 149 (1966)