Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:39:38.236Z Has data issue: false hasContentIssue false

Generalized finite difference scheme using mainly orthogonaland locally barycentric dual mesh for electromagnetic problems

Published online by Cambridge University Press:  21 October 2010

L. Bernard*
Affiliation:
Laboratoire de Génie Électrique de Paris, SUPELEC, Univ. Paris-Sud, Univ. Pierre et Marie Curie 06, CNRS (UMR 8507), 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
L. Pichon
Affiliation:
Laboratoire de Génie Électrique de Paris, SUPELEC, Univ. Paris-Sud, Univ. Pierre et Marie Curie 06, CNRS (UMR 8507), 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
Get access

Abstract

A mainly orthogonal and locally barycentric dual mesh is used to improve the performances of a generalized finite difference method. A criterium is proposed to choose between an orthogonal and a barycentric construction for the dual mesh taking into account stability considerations for an explicit time scheme. The construction of the constitutive matrix is performed using either the microcell or the Galerkin method. The proposed method is shown to considerably reduce the computational cost in the assembly process and the resolution compared to methods using completely barycentric dual meshes.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weiland, T., Electron. Commun. 31, 116 (1977)
Marrone, M., PIER 32, 317 (2001) CrossRef
Tonti, E., PIER 32, 1 (2001) CrossRef
Bossavit, A., PIER 32, 45 (2001) CrossRef
Korecki, J. et al., COMPEL 27, 47 (2008)
Alotto, P. et al., IEEE Trans. Magn. 42, 799 (2006) CrossRef
Auchmann, B. et al., IEEE Trans. Magn. 42, 643 (2006) CrossRef
Bossavit, A., J. Jpn Soc. Appl. Electromagn. 8, 203 (2000)
J. Jin, The finite element method in electromagnetics (Wiley-Interscience, 2002), pp. 536–538