Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T00:44:28.613Z Has data issue: false hasContentIssue false

Frequency dependent electrical characteristics of ferroelectric Pb4.0K1.0Li1.0Nb10O30 ceramics

Published online by Cambridge University Press:  08 August 2007

K. S. Rao*
Affiliation:
Centre for Piezoelectric Transducer Materials, Department of Physics, Andhra University, Visakhapatnam – 530 003, India
P. M. Krishna
Affiliation:
Centre for Piezoelectric Transducer Materials, Department of Physics, Andhra University, Visakhapatnam – 530 003, India
D. M. Prasad
Affiliation:
Centre for Piezoelectric Transducer Materials, Department of Physics, Andhra University, Visakhapatnam – 530 003, India
T. S. Latha
Affiliation:
Centre for Piezoelectric Transducer Materials, Department of Physics, Andhra University, Visakhapatnam – 530 003, India
M. Hussain
Affiliation:
Department of Physics, Sri Venkateswara University, Tirupati, India
Get access

Abstract

Dielectric, impedance, modulus and conductivity studies were performed over temperature 35 °C–600 °C and frequency 45 Hz–5 MHz range on the Lead Potassium Lithium Niobate (Pb4.0K1.0Li1.0Nb10O30, PKLN) ceramics. These studies established the conduction ion motion and polarization mechanism in the material. The dispersive dielectric loss at high temperature reveals the ionic conductivity. From frequency variation of ε l response the pre-factor A(T) and critical exponent n(T) are evaluated, and are used in Jonscher's dielectric dispersion relation for ε' to fit with the experimental data. Complex impedance plots showed a non – Debye type relaxation, are used to evaluate the grain and grain boundary conduction and relaxation activation energies. DC and ac conduction activation energies are estimated from Arrhenius plots. Occupancy of Li+ for C-sites gave a completely filled structure and enhanced the phase transition temperature to 520 °C compared to PKN. This is supported by the conduction activation energy in ferro region is more than the para region. Also, the dc conductivity characterized from bulk resistance and Mll peak frequency. Polaron hoping mechanism at room temperature has been confirmed via the linear variation of the plot log (σ ac σ dc ) as a function of log ω 2. Stretched exponential parameter, β(0 < β $\leqslant$ 1) has been evaluated from impedance plots, interpreted as a result of correlated motions between the Li+ ions and distribution of dielectric relaxation. Compared the results from different techniques, and discussed the conduction mechanism in the material.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goodman, G., J. Am. Ceram. Soc. 36, 368 (1953) CrossRef
Abrahams, S.C., Jamieson, P.B., Bernstein, J.L., J. Chem. Phys. 54, 2355 (1971) CrossRef
Lanfredi, S., Saia, P.S., Lebullerger, R., Hermands, A.C., Solid State Ionics 146, 329 (2002) CrossRef
Gerhardt, R., J. Phys. Chem. Solids 55, 1491 (1994) CrossRef
Jonscher, A.K., Nature 253, 717 (1975) CrossRef
Yamada, T., Appl. Phys. Lett. 23, 213 (1973) CrossRef
Nakano, J., Yamada, T., J. Appl. Phys. 46, 2361 (1975) CrossRef
Fan, S., Sun, R., Lin, Y., Wu, J., J. Cryst. Growth 198, 542 (1999) CrossRef
Kimura, H., Maiwa, K., Miyazaki, A., Nakamura, H., Cheng, Z., Venkadasamy, K.C., Jpn J. Appl. Phys 43, 6658 (2004) CrossRef
Kimura, H., Maiwa, K., Miyazaki, A., Venkadasamy, K.C., Cheng, Z., Jpn J. Cryst. Growth 275, 883 (2005)
Yamada, T., J. Appl. Phys. 46, 2894 (1975) CrossRef
O'Connell, R.M., J. Appl. Phys. 49, 3324 (1978)
Sciau, P., Calvarin, G., Ravez, J., Acta Cryst. B 55, 459 (1999) CrossRef
Zhigao, L., Bonnet, B.P., Ravez, J., Hagenmuller, P., J. Eur. Ceram. Soc. 9, 381 (1992) CrossRef
Rao, K.S., Krishna, P.M., Latha, T.S., Prasad, D.M., Mat. Sci. Eng. B 131, 127 (2006) CrossRef
M. Dong, J.-M. Reau, J. Ravez, in Proc. of Electroceramics V, Aveiro, Portugal (sept. 1996)
B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley pub, USA, 1978), 2e
Zeng, X.H., Chen, X.M., J. Mater. Res. 17, 1664 (2002)
Rao, E.C.S., Shirane, G., J. Chem. Phys. 32, 1846 (1960)
Dong, M., Reau, J.-M., Ravez, J., Solid State Ionics 183, 91 (1996)
Nakano, J., Yamada, T., J. Appl. Phys. 46, 2361 (1975) CrossRef
Shrout, T.R., Cross, L.E., Hukin, D.A., Ferroelectr. Lett. 44, 325 (1983) CrossRef
Shrout, T.R., Chenand, H., Cross, L.E., Ferroelectr. Lett. 74, 317 (1987) CrossRef
Kato, K., Zheng, C., Finder, J.M., Dey, S.K., Troii, T., J. Am. Ceram. Soc. 81, 1869 (1998) CrossRef
Du, X., Chen, I.W., J. Am. Ceram. Soc. 81, 3253 (1998) CrossRef
Kim, J.S., J. Korean Phys. Soc. 43, 1081 (2003)
R.V. Hipple, Dielectric and Waves (John–Wiley Sons, NY, 1954)
Lu, Z., Bonnet, J.P., Ravez, J., Hagenmuller, P., Solid State Ionics 57, 235 (1992) CrossRef
Jonscher, A.K., Hill, R.M., Pickup, C., J. Mater. Sci. 20, 4431 (1985)
Nealon, T.A., Ferroelectrics 76, 377 (1987) CrossRef
Lu, Z., Bonnet, J.P., Ravez, J., Hagenmuller, P., Eur. J. Solid State Inorg. Chem. 28, 363 (1991)
Fan, C.L., Ciardullo, D., Huebrier, W., Mater. Sci. Eng. B 1009, 1 (2003) CrossRef
Bauerle, J.E., J. Phys. Chem. Solids 30, 2657 (1969) CrossRef
Cole, K.S., Cole, R.H., J. Chem. Phys. 9, 341 (1941) CrossRef
Nobre, M.A.L., Fredi, S.L., Mater. Lett. 50, 322 (2001) CrossRef
Nobre, M.A.L., Fredi, S.L., J. Phys. Chem. Solids 62, 1999 (2001) CrossRef
Nobre, M.A.L., Fredi, S.L., Mater. Lett. 47, 362 (2001) CrossRef
J.R. Macdonald, in Impedance Spectroscopy (Wiley, NY, 1987)
Hodge, I.M., Ingram, M.D., West, A.R., J. Am. Ceram. Soc. 74, 125 (1976)
Wu, Y., Forbess, M.J., Seraji, S., Limmer, S.J., Chou, T.P., Cao, G., Mater. Sci. Eng. B 86, 70 (2001) CrossRef
West, A.R., Sinclair, D.C., Hirose, N., J. Electroceram. 1, 65 (1975) CrossRef
Steil, M.C., Thevenot, F., M. Kleitz J. Electrochem. Soc. 144, 390 (1997) CrossRef
Kroger, F.A., Vink, H.J., Solid State Phys. 3, 307 (1956) CrossRef
Chen, D.R., Yan, Y.G., Electron. Elements Mater. 1, 25 (1982)
Macdo, P.B., Moynihan, C.T., Bose, R., Phys. Chem. Glasses 13, 171 (1972)
Liu, J., Duan, Ch.-G., Yin, W.G., Mei, W.N., Smith, R.W., J.R. Harday J. Chem. Phys. 119, 2812 (2003) CrossRef
Hirose, N., West, A.R., J. Am. Ceram. Soc. 79, 1633 (1996) CrossRef
Kim, J.S., Song, T.K., J. Phys. Soc. Jpn 70, 3419 (2001) CrossRef
A.K. Jonscher, Dielectric relaxation in solids (Chelsea Press, London, 1983)
Elliot, S.R., Adv. Phys. 36, 135 (1987)
Funke, K., Prog. Solid State Chem. 22, 111 (1993) CrossRef
Mizaras, R., Takashige, M., Banys, J., Kojima, S., Grigas, J., Hamazaki, Sin-Ichi, A. Brilingas, J. Phys. Soc. Jpn 66, 2881 (1997). CrossRef
Selvasekarapandian, S., Vijayakumar, M., Mater. Chem. Phys. 80, 29 (2003) CrossRef
Pollack, M., Geable, T.H., Phys. Rev. 122, 1742 (1961)
Pike, G.E., Phys. Rev. B 6, 1571 (1972)
Hornebecq, V., Reau, J.M., Ravez, J., Solid State Ionics 127, 231 (2000) CrossRef
Mahaboob, G. Prsad, G.S. Kumar, Bull. Mat. Sci. 29, 35 (2005)
Shripal, A.K. Misra, S.D. Pandey, R.P. Tandon, Eur. J. Solid State Inorg. Chem. 29, 229 (1992)
C. Kittel, Intr. to solid state phys. (Wiley Eastern Univ., 1976), Edition (V)
Alder, D., Feinleib, J., Phys. Rev. B 2, 3112 (1970)
Williams, G., Watts, D.C., Trans. Faraday Soc. 23, 625 (1970)
Nagai, K.L., Martin, S.W., Phys. Rev. B 40, 10050 (1989)
Howell, F.S., Bose, R.A., Macedo, P.B., Moynihan, C.T., J. Phys. Chem. 78, 639 (1974) CrossRef
Reau, J.M., Rossignol, S., Tanguy, B., Paris, M.A., Rojo, J.M., Sanz, J., Solid State Ionics 80, 283 (1995) CrossRef
Zouari, N., Mnif, M., Khemakhem, H., Mhiri, T., Daoud, A., Solid State Ionics 110, 269 (1998) CrossRef
Zhigao, L., Bonnet, J.P., Ravez, J., Reau, J.M., Hagenmuller, P., J. Phys. Chem. Solids 53, 1 (1992) CrossRef
Dissado, L.A., Hill, R.H., Philos. Mag. B 41, 625 (1980) CrossRef