Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T10:51:19.415Z Has data issue: false hasContentIssue false

FMR study of 0.30(Fe2O3)/0.70(ZnO) nanocomposite

Published online by Cambridge University Press:  28 March 2013

Kamil Wardal
Affiliation:
Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
Janusz Typek*
Affiliation:
Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
Grzegorz Zolnierkiewicz
Affiliation:
Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
Niko Guskos
Affiliation:
Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland Solid State Physics, Department of Physics, University of Athens, Panepistimiopolis, 15 784 Zografos, Athens, Greece
Urszula Narkiewicz
Affiliation:
Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, K. Pulaskiego 10, 70-322 Szczecin, Poland
Daniel Sibera
Affiliation:
Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, K. Pulaskiego 10, 70-322 Szczecin, Poland
*
Get access

Abstract

ZnO nanocrystals doped with Fe2O3 have been synthesized by the calcination method. Ferromagnetic resonance (FMR) study of 0.3(Fe2O3/0.7(ZnO) nanocomposite has been carried out in the 4–300 K range. The presence of magnetic zinc ferrite ZnFe2O4 nanoparticles with an average crystallite size of 11 nm was identified by XRD. Temperature dependence of the resonance field, linewidth and the integrate intensity calculated from FMR spectra has been determined. Existence of two temperature regimes: high (above 50 K) and low (below 50 K) has been established, further divided into two temperature ranges. The results of FMR study of agglomerated ZnFe2O4 nanoparticles indicate an important role of magnetic interactions, both inter-particle (exchange and dipolar) and intra-particle connected with the core-shell magnetic structure.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Wolf, S.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Science 294, 1488 (2001)CrossRef
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D., Science 287, 5455 (2000)CrossRef
Jin, Z., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., Koinuma, H., Appl. Phys. Lett. 78, 3824 (2001)CrossRef
Kolesnik, S., Dabrowski, B., J. Appl. Phys. 96, 5379 (2004)CrossRef
Lawes, G., Risbud, A.S., Ramirez, A.P., Seshadri, R., Phys. Rev. B 71, 1 (2005)CrossRef
Singh, D.J., Gupta, M., Gupta, R., Phys. Rev. B 63, 205102 (2001)CrossRef
Bohra, M., Prasad, S., Kumar, N., Misra, D.S., Sahoo, S.C., Venkataramani, N., Krishnan, R., Appl. Phys. Lett. 88, 26206 (2006)CrossRef
Bohra, M., Prasad, S., Venkataramani, N., Kumar, N., Sahoo, S.C., Krishnan, R., IEEE Trans. Magn. 47, 345 (2011)CrossRef
Sultan, M., Singh, R., J. Phys.: Conf. Ser. 200, 072090 (2010)
Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K., Nath, T.K., Das, A.K., Dasgupta, I., Das, G.P., Phys. Rev. B 75, 144404 (2007)CrossRef
Shim, J.H., Hwang, T., Lee, S., Park, J.H., Han, S.J., Jeong, Y.H., Appl. Phys. Lett. 86, 0852503 (2005)
Li, X., Lu, G., Li, S., J. Alloy. Compd. 235, 150 (1996)CrossRef
Blanco-Gutierrez, V., Saez-Puche, R., Torralvo-Fernandez, M., J. Mater. Chem. 22, 2992 (2012)CrossRef
Guskos, N., Glenis, S., Zolnierkiewicz, G., Typek, J., Berczynski, P., Guskos, A., Sibera, D., Narkiewicz, U., Appl. Phys. Lett. 100, 122403 (2012)CrossRef
Guskos, N., Glenis, S., Typek, J., Zolnierkiewicz, G., Berczynski, P., Wardal, K., Guskos, A., Sibera, D., Moszyński, D., Lojkowski, W., Narkiewicz, U., Cent. Eur. J. Phys. 10, 470 (2012)
Kuryliszyn-Kudelskaa, I., Hadžic, B., Sibera, D., Kilanski, L., Romcevic, N., Romcevic, M., Narkiewicz, U., Dobrowolski, W., Acta Phys. Polon. A 119, 689 (2011)CrossRef
Guskos, N., Zolnierkiewicz, G., Typek, J., Sibera, D., Narkiewicz, U., Rev. Adv. Mater. Sci. 23, 224 (2010)
Sibera, D., Kaszewski, J., Moszynski, D., Borowiak-Palen, E., Lojkowski, W., Narkiewicz, U., Phys. Status Solidi C 7, 1420 (2010)CrossRef
Kliava, J., Gubin, S.P., Magnetic Nanoparticles (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009)Google Scholar
De Biasi, E., Zysler, R.D., Ramos, C.A., Romero, H., J. Magn. Magn. Mater. 294, e87 (2005)CrossRef
Raikher, Yu.L., Stepanov, V.I., Phys. Rev. B 50, 6250 (1994)CrossRef
Sukhov, A., Usadel, K.D., Nowak, U., J. Magn. Magn. Mater. 320, 31 (2008)CrossRef
De Biasi, E., Ramos, C.A., Zysler, R.D., J. Magn. Magn. Mater. 262, 235 (2003)CrossRef
Vargas, J.M., Lima, E. Jr., Zysler, R.D., Duque, J.G.S., De Biasi, E., Knobel, M., Eur. Phys. J. B 64, 211 (2008)CrossRef
Blanco-Gutierrez, V., Saez-Puche, R., Torralvo-Fernandez, M.J., J. Mater. Chem. 22, 2992 (2012)CrossRef
Koseoglu, Y., Yildiz, H., Yilgin, R., J. Nanosci. Nanotechno. 12, 2261 (2012)CrossRef