Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:39:01.518Z Has data issue: false hasContentIssue false

Finite-difference time-domain method for design and analysis of microcavity -Coupled submicron-width waveguides

Published online by Cambridge University Press:  15 March 2002

W. Aroua
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Campus Universitaire, BP 676, 1080 Tunis, Tunisia
D. Gamra
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Campus Universitaire, BP 676, 1080 Tunis, Tunisia
F. AbdelMalek
Affiliation:
Institut National des Sciences Appliquées et Technologies, Faculté des Sciences de Tunis, Campus Universitaire, BP 676, 1080 Tunis, Tunisia
H. Bouchriha*
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Campus Universitaire, BP 676, 1080 Tunis, Tunisia
Get access

Abstract

In this paper the finite-difference time-domain (FDTD) method is reviewed and then used to model and predict the geometric parameters used for the design of the device. The waveguide consists of a periodic array of air gap etched into a silicon (Si) strip on a silicon dioxide (SiO2) layer. The width and the depth of the grooves of the air gap (n = 1) as well as the length of the silicon layer (n = 3.4) are investigated. Using FDTD, the optical parameters are characterized. The effect of the air gap on the field profile distribution of the whole structure is calculated and performed in the range 0.09687 μm –1.55 μm. The field profile, and the response of the microcavity against frequency are calculated from sinusoidal sources. The spectral behavior of the structure is performed and its validity is verified by calculation of the reflectance spectra.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Oda, K., Suzuki, S., Takahashi, H., Toba, H., IEEE Photon. Technol. Lett. 6, 1031 (1994). CrossRef
Orta, R., Savi, P., Tascone, R., Trinchero, D., IEEE Photon. Lett. 7, 1447 (1995). CrossRef
K. Sasayama, F. Früh, T. Kominato, K. Habara, IEICE Trans. Commun. E78-B, 674 (1995).
Weiershausen, W., Zengerle, R., Appl. Opt. 35, 5967 (1996). CrossRef
D. Rafizadeh, J.P. Zhang, S.C. Hagness, A. Taflove, R.C. Tiberio, K.A. Stair, S.T. Ho, Nanofabricated waveguide-coupled 1.5 $\mu$ m microcavity ring and disk resonators with high Q and 21.6 nm free spectral range, in Proc. Conf. Lasers Electro-Optics, Baltimore, MD, postdeadline paper CPD23, May 1997.
McCall, S.L., Levi, A.F.J., Slusher, R.E., Pearton, S.J., Logan, R.A., Appl. Phys. Lett. 60, 289 (1992). CrossRef
J.S. Foresi, B. Little, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, W. Greene, Si/SiO2 micro-ring resonator optical add/drop filters, in Proc. Conf. Lasers Electro-Optics, Baltimore, MD, postdeadline paper CPD22, May 1997.
Blom, F.C., van Dijk, D.R., Hoekstra, H.J.W.M., Driessen, A., Popma, Th.J.A., Appl. Phys. Lett. 71, 747 (1997). CrossRef
Zhang, J.P., Chus, D.Y., Wu, S.L., Bi, W.G., Tibero, R.C., Tu, C.W., Ho, S.T., IEEE Photon. Technol. Lett. 8, 968 (1996). CrossRef
Yee, K.S., IEEE Trans. Antennas Propagat. 14, 302 (1966).
Taflove, A., Umashankar, K.R., IEEE Proc. 77, 682 (1989). CrossRef
Taflove, A., Umashankar, K.R., IEEE Electromagn. 10, 105 (1990). CrossRef
Tirkas, P.A., Demarset, K.R., IEEE Trans. Antennas Propagat. 39, 1338 (1991). CrossRef
Britt, C.L., IEEE Trans. Antennas Propagat. 37, 1181 (1989). CrossRef
Taflove, A., Umashankar, K.R., Becker, B., Harfoush, F., Yee, K., IEEE Trans. Antennas Propagat. 36, 247 (1988). CrossRef
Demarest, K.R., IEEE Trans. Antennas Propagat. 35, 826 (1987). CrossRef
Riley, D.J., Turner, C.D., IEEE Trans. Antennas Propagat. 38, 1943 (1990). CrossRef
Shaw, J.A., Durney, H.D., Cristensen, D.A., IEEE Trans. Biomed. Eng. 38, 861 (1991). CrossRef
Dimbylow, P.J., IEEE Trans. Biomed. Eng. 38, 423 (1991). CrossRef
Sullivan, D.M., IEEE Trans. Microwave Theory Tech. 39, 864 (1991). CrossRef
Gilbert, J., Holland, R., IEEE Trans. Nuclear Sci. 28, 4589 (1981). CrossRef
Holland, R., Simpson, L., IEEE Trans. Electromagn. Compat. 23, 88 (1981). CrossRef
Holland, R., Simpson, L., Kunz, K.S., IEEE Trans. Electromagn. Compat. 22, 203 (1980). CrossRef
Kunz, K.S., Lee, K., IEEE Trans. Electromagn. Compat. 20, 328 (1978). CrossRef
Kunz, K.S., Lee, K., IEEE Trans. Electromagn. Compat. 20, 333 (1978). CrossRef
Lee, J.F., Palandech, R., Mittra, R., IEEE Trans. Microwave Theory Tech. 40, 346 (1992).
Zhang, X., Fang, J., Mei, K.K., Liu, Y., IEEE Trans. Microwave Theory Tech. 36, 263 (1988). CrossRef
Jurgens, T.G., Taflove, A., Umashankar, K.R., Moore, T.G., IEEE Trans. Antennas Propagat. 40, 357 (1992). CrossRef
Reineix, A., Jecko, B., IEEE Trans. Antennas Propagat. 37, 1361 (1989). CrossRef
Sheen, D.M., Ali, S.M., Aboureza, M.D., Kong, J.A., IEEE Trans. Microwave Theory Tech. 38, 849 (1990). CrossRef
Yee, K.S., Ingham, D., Shlager, K., IEEE Trans. Antennas Propagat. 39, 410 (1991). CrossRef
Holland, R., Williams, J.W., IEEE Trans. Nuclear Sci. 30, 4592 (1983). CrossRef
Holland, R., Cable, V.P., Wilson, L.C., IEEE Trans. Electromagn. Compat. 33, 281 (1991). CrossRef
Mur, G., IEEE Trans. Electromagn. Compat. 23, 377 (1981). CrossRef
Engquist, B., Majda, A., Commun. Pure Appl. Math. 32, 313 (1979). CrossRef