Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T12:38:29.670Z Has data issue: false hasContentIssue false

Fabrication and temperature-dependent band gap shrinkage of α-phase Bi2O3 thin films grown by atomic layer deposition method

Published online by Cambridge University Press:  22 May 2013

Yude Shen*
Affiliation:
Key Laboratory for Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
Yawei Li
Affiliation:
Key Laboratory for Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
Kai Jiang
Affiliation:
Key Laboratory for Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
Jinzhong Zhang
Affiliation:
Key Laboratory for Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
Zhihua Duan
Affiliation:
Key Laboratory for Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
Zhigao Hu
Affiliation:
Key Laboratory for Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
Junhao Chu
Affiliation:
Key Laboratory for Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, P.R. China National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, P.R. China
*
Get access

Abstract

α-Bi2O3 thin films were deposited on different substrates by atomic layer deposition method. The results of X-ray diffraction, high-resolution transmission electron microscopy and X-ray photoelectron spectroscope correspond to α-Bi2O3. The Fourier transform infrared spectroscopy analyses indicate that the reaction is rather complete during the deposition. Optical properties of the films have been investigated using ultraviolet-infrared transmittance spectra in the temperature range of 8–300 K. It is found that the band gap Eg decreases from 3.12 to 3.03 eV with the temperature. The parameters αB and ΘB of the Bose-Einstein model are 69.3 meV and 293.9 K, respectively. The band narrowing coefficient dEg/dT is −0.435 meV/K at room temperature. The present results can be considerable for future application of Bi2O3-based electro-optic and wide temperature range optoelectronic devices.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Peiteado, M., de la Rubia, M.A., Velasco, M.J., Valle, F.J., Caballero, A.C., J. Eur. Ceram. Soc. 25, 1675 (2005)CrossRef
Bian, Z.F., Zhu, J., Wang, S.H., Cao, Y., Qian, X.F., Li, H.X., J. Phys. Chem. C 112, 6258 (2008)CrossRef
Cabot, A., Marsal, A., Arbiol, J., Morante, J., Sensor Actuat. B Chem. 99, 74 (2004)CrossRef
Kobayasbhi, K., J. Non-Cryst. Solids 316, 403 (2003)CrossRef
Glass, A., Nassau, K., J. Appl. Phys. 51, 3756 (1980)CrossRef
Cornei, N., Tancret, N., Abraham, F., Mentre, O., Inorg. Chem. 45, 4886 (2006)CrossRef
Gualtieri, A.F., Immovilli, S., Prudenziati, M., Powder Diffr. 12, 90 (1997)CrossRef
Shuk, P., Wiemhofer, H.D., Guth, U., Gopel, W., Greenblatt, M., Solid State Ion. 89, 179 (1996)CrossRef
Leontie, L., Caraman, M., Delibas, M., Rusu, G.I., Mater. Res. Bull. 36, 1629 (2001)CrossRef
Leontie, L., Caraman, M., Visinoiu, A., Rusu, G.I., Thin Solid Films 473, 230 (2005)CrossRef
Schuisky, M., Harsta, A., Chem. Vapor Depos. 2, 235 (1996)CrossRef
Fan, H.T., Teng, X.M., Pan, S.S., Ye, C., Li, G.H., Zhang, L.D., Appl. Phys. Lett. 87, 231916 (2005)CrossRef
Hatanpaa, T., Vehkamaki, M., Ritala, M., Leskela, M., Dalton Trans. 39, 3219 (2010)CrossRef
Shen, Y., Li, Y., Li, W., Zhang, J., Hu, Z., Chu, J., J. Phys. Chem. C 116, 3449 (2012)CrossRef
Kern, R., Metois, G., Curr. Top. Mater. Sci. 3, 131 (1979)
Miyake, S., Yamamoto, K., Fujihara, S., Kimura, T., J. Am. Ceram. Soc. 85, 992 (2002)CrossRef
Wagner, C., Surf. Interface Anal. 3, 211 (1981)CrossRef
Betsch, R.J., White, W.B., Spectrochim. Acta A 34, 505 (1978)CrossRef
Kuzmenko, A.B., Tishchenko, E.A., Orlov, V.G., J. Phys. Condens. Matter 8, 6199 (1996)CrossRef
Wu, J., Walukiewicz, W., Shan, W., Yu, K., Ager, J. III, Li, S., Haller, E., Lu, H., Schaff, W.J., J. Appl. Phys. 94, 4457 (2003)CrossRef
Muth, J., Lee, J., Shmagin, I., Kolbas, R., Casey, H. Jr, Keller, B., Mishra, U., DenBaars, S., Appl. Phys. Lett. 71, 2572 (1997)CrossRef
Li, W., Zhu, J., Xu, X., Jiang, K., Hu, Z., Zhu, M., Chu, J., J. Appl. Phys. 110, 013504 (2011)
Jiang, L., Shen, W., Ogawa, H., Guo, Q., J. Appl. Phys. 94, 5704 (2003)CrossRef
Mortensen, N.A., Xiao, S., Appl. Phys. Lett. 90, 141108 (2007)CrossRef
Tauc, J., Menth, A., Wood, D., Phys. Rev. Lett. 25, 749 (1970)CrossRef
Davis, E., Mott, N.F., Philos. Mag. 22, 903 (1970)CrossRef
Debies, T.P., Rabalais, J.W., Chem. Phys. 20, 277 (1977)CrossRef
Vina, L., Logothetidis, S., Cardona, M., Phys. Rev. B 30, 1979 (1984)CrossRef
Rincon, C., Wasim, S.M., Marin, G., Molina, I., J. Appl. Phys. 93, 780 (2003)CrossRef
Manoogian, A., Woolley, J., Can. J. Phys. 62, 285 (1984)
Nam, K., Li, J., Lin, J., Jiang, H., Appl. Phys. Lett. 85, 3489 (2004)CrossRef
Biernacki, S., Scherz, U., Meyer, B., Phys. Rev. B 49, 4501 (1994)CrossRef