Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T16:39:41.125Z Has data issue: false hasContentIssue false

Excited state absorption of pump and laser radiations in NYAB non-linear crystal operating at 1.3 µm for visible laser light generation

Published online by Cambridge University Press:  15 April 2000

D. Jaque
Affiliation:
Departamento de Física de Materiales, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid, Spain
J. García Solé*
Affiliation:
Departamento de Física de Materiales, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid, Spain
A. Brenier
Affiliation:
Laboratoire de Physico-Chimie des Matériaux Luminiscents (UMR CNRS 5620), Université Claude Bernard-Lyon, 69629 Villeurbane, France
G. Boulon
Affiliation:
Laboratoire de Physico-Chimie des Matériaux Luminiscents (UMR CNRS 5620), Université Claude Bernard-Lyon, 69629 Villeurbane, France
Z. D. Luo
Affiliation:
Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
Get access

Abstract

Excited state absorption of laser (≅ 1.3 µm, corresponding to the $^4{\rm F}_{3/2}\to {}^{4}I_{13/2}$ laser channel) and pump (790-860 nm) radiation have been investigated in Nd doped YAl3(BO3)4 non-linear laser crystal. Laser gain slope efficiency measurements as a function of pump wavelength have been used to estimate the excited state absorption of pump radiation. On the other hand, excited state absorption cross-section in the 1300−1400 nm wavelength range has been measured by using two beam spectroscopy. We have obtained that excited state absorption cross-section for pump radiation is negligible whereas around 1.3 µm it is comparable to the stimulated emission cross-section from 4F3/2 state, so that the net gain cross-section becomes negative for certain wavelengths.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jaque, D., Capmany, J., García Solé, J., Appl. Phys. Lett. 75, 3 (1999). CrossRef
Jaque, D., Capmany, J., García Solé, J., Appl. Phys. Lett. 74, 13 (1999). CrossRef
Graydon, O., Opto Laser Europe 49, 15 (1998).
Payne, S.A., Chase, L.L., Newkirk, H.W., Smith, L.K., Krupke, W.F., IEE J. Quant. Electron. 6, 2243 (1988). CrossRef
Bartschke, J., Knappe, R., Boller, K.-J., Wallestein, R., IEE J. Quant. Electron. 33, 2295 (1997). CrossRef
Miller, R.C., Appl. Phys. Lett. 5, 17 (1964). CrossRef
Henderson, S.W., Suni, P.J., Hale, C.P., Hannon, S.M., Magee, J.R., Burns, D.L., Yuen, E.H., IEEE Trans. Geosci. Remote Sensing 31, 3 (1993). CrossRef
Calas, P., Rochd, T., Trib. Dentaire 3, 17 (1995).
G.P. Agrawal, Fiber-Optics Communication Systems, 2nd edn. (Wiley, New York, 1998).
Jaque, D., Mu, J.A. noz, F. Cussó, J. García Solé, J. Phys. Cond. Matt. 10, 7901 (1998). CrossRef
Jaque, D., Capmany, J., Luo, Z.D., García Solé, J., J. Opt. Soc. Am. B 15, 6 (1998). CrossRef
Jaque, D., Capmany, J., Luo, Z.D., García Solé, J., J. Phys. Cond. Matt. 9, 9175 (1997). CrossRef
Jaque, D., Capmany, J., García Solé, J., Opt. Eng. 38, 1794 (1999). CrossRef
Kliewer, M.L., Powell, R.C., IEE J. Quant. Electron. 25, 8 (1989). CrossRef
Luo, Z., Prog. Natur. Sci. 4, 4 (1994).
N. Hodgson, W. Horst, Optical Resonators (Springer, 1997).
D. Jaque, J. Capmany, F. Molero, Z.D. Luo, J. García Solé, Opt. Mat. 10 (211) (1998).
Guyot, Y., Moncorgé, R., J. Appl. Phys. 73, 12 (1993).
Jaque, D., Capmany, J., Sanz García, J.A., Brenier, A., Boulon, G., García Solé, J., Opt. Mat. 13, 147 (1999). CrossRef