Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T17:08:13.149Z Has data issue: false hasContentIssue false

Enhanced field emission properties from well-aligned ZnO nanocones

Published online by Cambridge University Press:  24 October 2008

Y. H. Yang
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, School of Physics Science & Engineering, Zhongshan University, Guangzhou 510275, P.R. China
Y. Feng
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, School of Physics Science & Engineering, Zhongshan University, Guangzhou 510275, P.R. China
N. S. Xu
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, School of Physics Science & Engineering, Zhongshan University, Guangzhou 510275, P.R. China
G. W. Yang*
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, School of Physics Science & Engineering, Zhongshan University, Guangzhou 510275, P.R. China
Get access

Abstract

Well-aligned ZnO nanocones were self-assembled on amorphous carbon using manganese oxide assisted thermal chemical vapor transport and condensation, without any metal catalysts. Compared with the ZnO nanowires fabricated without the manganese oxide assistance, the field emission performance of the ZnO nanocones was greatly improved, lower turn-on electronic fields and higher current densities were achieved with these emitters. Experimental analyses showed that the ZnO nanocones grow vertically and epitaxially on the [0002] oriented ZnO intermediate layer between nanocones and substrate The manganese oxide seems to play a crucial role in the formation of this ZnO intermediate layer.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., Adv. Mater. 15, 353 (2003) CrossRef
Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H., Lee, H.J., Appl. Phys. Lett. 81, 3648 (2002) CrossRef
Yang, Y.H., Wang, C.X., Wang, B., Xu, N.S., Yang, G.W., Chem. Phys. Lett. 403, 248 (2005) CrossRef
Ku, T.K., Chen, M.S., Wang, C.C., Feng, M.S., Hsieh, I.J., Huang, J.C.M., Cheng, H.C., Jpn J. Appl. Phys. (Part 1) 34, 5789 (1995) CrossRef
Yang, Y.H., Wang, B., Xu, N.S., Yang, G.W., Appl. Phys. Lett. 89, 043108 (2006) CrossRef
Yang, Y.H., Wang, C.X., Wang, B., Li, Z.Y., Chen, J., Chen, D.H., Xu, N.S., Yang, G.W., Appl. Phys. Lett. 87, 183109 (2005) CrossRef
Yang, Y.H., Wang, B., Yang, G.W., Cryst. Growth & Des. 7, 1242 (2007) CrossRef
Li, C., Fang, G.J., Su, F.H., Li, G.H., Wu, X.G., Zhao, X.Z., Nanotechnology 17, 3740 (2006) CrossRef
Li, C., Fang, G.J., Xu, S., Zhao, D.S., Zhao, X.Z., Nanotechnology 17, 5367 (2006) CrossRef
Wander, A., Harrison, N.M., Surf. Sci. 468, L851 (2000) CrossRef
Wander, A., Harrison, N.M., Surf. Sci. 457, L342 (2000) CrossRef
Yang, Y.H., Wang, B., Yang, G.W., Nanotechnology 17, 5556 (2006) CrossRef