Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:03:32.252Z Has data issue: false hasContentIssue false

Engineering of Bi2Se3 nanowires by laser cutting

Published online by Cambridge University Press:  01 April 2014

Piet Schönherr
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
Alexander A. Baker
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
Patryk Kusch
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Stephanie Reich
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Thorsten Hesjedal*
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
*
Get access

Abstract

We present a method to control the length and diameter of Bi2Se3 nanowires through laser-cutting. Nanowires of the topologically insulating and thermoelectric material Bi2Se3 were grown using the vapor-liquid-solid method, and cut using a 532-nm-laser operating at a minimum power of 1 μW. The cutting process can be controlled through laser intensity and exposure time, and is based upon evaporation of Se from the nanowires. This method has many applications from pure research to device engineering.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kane, C.L., Mele, E.J., Phys. Rev. Lett. 95, 146802 (2005)CrossRef
Müchler, L., Casper, F., Yan, B., Chadov, S., Felser, C., Phys. Stat. Sol. (RRL) 7, 91 (2013)CrossRef
Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C., Nat.Phys. 5, 438 (2009)CrossRef
Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., Calado, V.E., van der Zant, H.S.J., Steele, G.A., Nano. Lett. 12, 3187 (2012)CrossRef
Li, Y., Stoica, V.A., Endicott, L., Wang, G., Sun, H., Pipe, K.P., Uher, C., Clarke, R., Appl. Phys. Lett. 99, 121903 (2011)CrossRef
Hong, S.S., Kundhikanjana, W., Cha, J.J., Lai, K., Kong, D., Meister, S., Kelly, M.A., Shen, Z.X., Cui, Y., Nano. Lett. 10, 3118 (2010)CrossRef
Lee, J.S., Brittman, S., Yu, D., Park, H., J. Am. Chem. Soc. 130, 6252 (2008)CrossRef
Kong, D., Randel, J.C., Peng, H., Cha, J.J., Meister, S., Lai, K., Chen, Y., Shen, Z.-X., Manoharan, H.C., Cui, Y., Nano. Lett. 10, 329 (2010)CrossRef
Zuev, Y.M., Lee, J.S., Galloy, C., Park, H., Kim, P., Nano. Lett. 10, 3037 (2010)CrossRef
Li, Y., Qian, F., Xiang, J., Lieber, C.M., Mater. Today 9, 18 (2006)CrossRef
Agarwal, R., Ladavac, K., Roichman, Y., Yu, G., Lieber, C.M., Grier, D., Opt. Express 22, 8906 (2005)CrossRef
Joyce, H.J., Gao, Q., Hoe Tan, H., Jagadish, C., Kim, Y., Zou, J., Smith, L.M., Jackson, H.E., Yarrison-Rice, J.M., Parkinson, P., Johnston, M.B., Prog. Quant. Electron. 35, 23 (2011)CrossRef
He, J., Chen, P., Lu, W., Dai, N., Zhu, D.M., J. Appl. Phys. 111, 094316 (2012)CrossRef
Richter, W., Becker, C.R., Phys. Stat. Sol. B 87, 619 (1977)CrossRef
Zhigilei, L.V., Kodali, P.B.S., Garrison, B.J., J. Phys. Chem. B 102, 2845 (1998)CrossRef