Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T06:04:45.863Z Has data issue: false hasContentIssue false

Ellipsometrically determination of the optical constants of ZnO in ZnO/Ag/ZnO multilayer system

Published online by Cambridge University Press:  25 September 2008

S. H. Mohamed*
Affiliation:
Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
S. A. Ahmed
Affiliation:
Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
Get access

Abstract

The variable angle spectroscopic ellipsometer in conjunction with computer simulation were employed to determine the optical constants of ZnO in the ZnO/Ag/ZnO (ZAZ) multilayer system. A five-phase, glass/ZnO/Ag/ZnO/air, model was used to fit the calculated data to the experimental spectra. The ellipsometrically determined ZnO and Ag layers thicknesses were found to be agreed well with those previously determined by X-ray reflectivity. The effects of Ag layer thickness (Agd ) and ZnO top layer thickness (ZnOd ) on the optical constants of ZnO in the ZAZ multilayer system were discussed. The refractive index values determined at 550 nm, remains almost constant as Agd increases while the refractive index values decrease with decreasing ZnOd . Over the whole visible spectral range the extinction coefficient values of the Agd group are very close to zero and does not depend on Agd while the extinction coefficient values of the ZnOd group increase with decreasing ZnOd . The optical band gap values are found to be affected strongly by both Agd and ZnOd .

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Leftheriotis, G., Papaefthimiou, S., Yianoulis, P., Sol. State Ion. 136, 655 (2000) CrossRef
Fang, G., Li, D., Yao, B., J. Cryst. Growth 247, 393 (2003) CrossRef
Beyer, W., Hüpkes, J., Stiebig, H., Thin Solid Films 516, 147 (2007) CrossRef
Bär, M., Bloeck, U., Muffler, H.-J., Lux-Steiner, M.C., Fischer, Ch.-H., Giersig, M., Niesen, T.P., Karg, F., J. Appl. Phys. 97, 014905 (2005) CrossRef
Sahu, D.R., Huang, J.-L., Thin Solid Films 216, 208 (2007) CrossRef
Mohamed, S.H., J. Phys. Chem. Sol. 69, 2378 (2008) CrossRef
Lorentz, H.A., Ann. Phys. 9, 641 (1880) CrossRef
Lorenz, L., Ann. Phys. 11, 70 (1880) CrossRef
Jain, A., Sagar, P., Mehra, R.M., Solid-State Electron. 50, 1420 (2006) CrossRef
Yang, Z.Q., Xu, Z.Z., Phys. Rev. B 54, 17577 (1996) CrossRef
Gai, Y.Q., Yao, B., Lu, Y.M., Shen, D.Z., Zhang, J.Y., Zhao, D.X., Fan, X.W., Phys. Lett. A 372, 72 (2007) CrossRef
Cao, X., Stoke, J.A., Li, J., Podraza, N.J., Du, W., Yang, X., Attygalle, D., Liao, X., Collins, R.W., Deng, X., J. Non-Cryst. Solids 354, 2397 (2008) CrossRef
Mohamed, S.H., Venkataraj, S., Vacuum 81, 636 (2007) CrossRef
Snyder, P.G., Rost, M.C., Bu-Abbud, G.H., Woollam, J.A., J. Appl. Phys. 60, 3293 (1986) CrossRef
Oudrhiri-Hassani, F., Presmanes, L., Barnabé, A., Tailhades, P., Appl. Surf. Sci. 254, 5796 (2008) CrossRef
Yamaguchi, T., Tamura, H., Taga, S., Tsuchiya, S., Appl. Opt. 25, 2703 (1986) CrossRef
W. Theiss, SCOUT Thin Film Analysis Software Handbook, Hard- and Software, edited by M. Theiss (Aachen, Germany, 2000), www.mtheiss.com
Fahland, M., Vogt, T., Schoenberger, W., Schiller, N., Thin Solid Films 516, 5777 (2008) CrossRef
Sun, X., Hong, R., Hou, H., Fan, Z., Shao, J., Thin Solid Films 515, 6962 (2007) CrossRef
Gupta, R.K., Ghosh, K., Patel, R., Mishra, S.R., Kahol, P.K., J. Cryst. Growth 310, 3019 (2008) CrossRef
Huang, B., Li, J., Wu, Y.-B., Guo, D.-H., Wu, S.-T., Mater. Lett. 62, 1316 (2008) CrossRef
Alizadeh, A., Sharma, P., Ganti, S., LeBoeuf, S.F., Tsakalakos, L., J. Appl. Phys. 95, 8199 (2004) CrossRef
Schuler, H., Klimm, S., Weissmann, G., Renner, C., Horn, S., Thin Solid Films 299, 119 (1997) CrossRef