Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T11:21:18.057Z Has data issue: false hasContentIssue false

Electronic properties of two coupled Si δ-doped GaAs structures

Published online by Cambridge University Press:  29 November 2002

E. Ozturk*
Affiliation:
Cumhuriyet University, Department of Physics, 58140 Sivas, Turkey
H. Sari
Affiliation:
Cumhuriyet University, Department of Physics, 58140 Sivas, Turkey
Y. Ergun
Affiliation:
Cumhuriyet University, Department of Physics, 58140 Sivas, Turkey
I. Sokmen
Affiliation:
Dokuzeylul University, Department of Physics, Izmir, Turkey
Get access

Abstract

We have theoretically investigated the subband structure of two coupled Si δ-doped GaAs at T = 0 K. For the uniform distribution we have studied the influence of the separation between the two doping layers. The electronic properties such as the effective potential, the density profile, the subband energies, the subband populations and Fermi energy have been calculated by solving Schrödinger and Poisson equations self-consistently. In this study, we have seen that the subband structure is quite sensitive to the separation between the two doping layers. We conclude that, if the coupling between two δ-doped GaAs layers is significant, the mobility of electrons in this structure is very high compared to single δ-doped structures because of the strong overlap between the electrons and the ionized donors in single δ-doped structures.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schubert, E.F., Fischer, A., Ploog, K., IEEE Trans. Electron Devices 33, 625 (1986) CrossRef
Ploog, K., Hauser, M., Fischer, A., Appl. Phys. A 45, 233 (1988) CrossRef
Ioriatti, L., Phys. Rev. B 41, 8340 (1990) CrossRef
Egues, J.C., Barbosa, J.C., Notari, A.C., Basmaji, P., Ioriatti, L., J. Appl. Phys. 70, 3678 (1991) CrossRef
Degani, M.H., Phys. Rev. B 44, 5580 (1991) CrossRef
Degani, M.H., J. Appl. Phys. 70, 4362 (1991) CrossRef
M.L. Ke, J.S. Rimmer, B. Hamilton, M. Missious, B. Khamsehpour, J.H. Evans, K.E. Singer, P. Zalm, Surf. Sci. 267, 65 1992
Shibli, S.M., Scolfaro, L.M., Leite, J.R., Mendonça, C.A.C., Plentz, F., Meneses, A., Appl. Phys. Lett. 60, 2895 (1992) CrossRef
Ben Jazia, A., Mejri, H., Maaref, H., Souissi, K., Semicond. Sci. Technol. 12, 1388 (1997) CrossRef
Ozturk, E., Ergun, Y., Sari, H., Sokmen, I., Superlatt. M. 28, 35 (2000) CrossRef
Ozturk, E., Ergun, Y., Sari, H., Sokmen, I., Semicond. Sci. Technol. 16, 421 (2001) CrossRef
Ozturk, E., Ergun, Y., Sari, H., Sokmen, I., Appl. Phys. A 73, 749 (2001) CrossRef
Ozturk, E., Ergun, Y., Sari, H., Sokmen, I., J. Appl. Phys. 91, 2118 (2002) CrossRef
Henning, J.C., Ansems, J.P., Semicond. Sci. Technol. 2, 1 (1987) CrossRef
Kartus, J., Monecke, J., Phys. Rev. B 49, 17216 (1994) CrossRef
Ploog, K., J. Cryst. Growth 81, 304 (1987) CrossRef
Chang, C.Y., Lin, W., Hsu, W.C., Wu, T.S., Chang, S.Z., Wang, C., Jpn. J. Appl. Phys. 30, 1158 (1991) CrossRef
Kuo, T.Y., Cunningham, J.E., Schubert, E.F., Tsang, W.T., Chiu, T.H., Run, F., Fonstad, C.G., J. Appl. Phys. 64, 3324 (1988) CrossRef
Zheng, X., Carns, T.K., Wang, K.L., Wu, B., Appl. Phys. Lett. 62, 504 (1993) CrossRef
Koenraad, P.M., Heessels, A.C.L., Blom, F.A.P., Perenboom, J.A.A.J., Wolter, J.H., Physica B 184, 221 (1993) CrossRef
Carns, T.K., Zheng, X., Wang, K.L., Appl. Phys. Lett. 62, 3455 (1993) CrossRef
Radamson, H.H., Sardela, M.R., Nur Jr, O.., M. Willander, B.E. Sernelius, W.X. Ni, G.V. Hansson, Appl. Phys. Lett. 64, 1842 (1994) CrossRef
Hai, G.Q., Studart, N., Peeters, F.M., Phys. Rev. B 52, 11273 (1995) CrossRef
Koenraad, P.M., Blom, F.A.P., Langerak, C.J.G.M., Leys, M.R., Perenboom, J.A.A.J., Singleton, J., Spermon, S.J.R.M., Van der Vleuten, W.C., Voncken, A.P.J., Wolter, J.H., Semicond. Sci. Technol. 5, 861 (1990) CrossRef