Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T18:09:16.647Z Has data issue: false hasContentIssue false

Electroabsorption study of index-defined semiconducting carbon nanotubes

A direct probe into carbon nanotube excitonic states

Published online by Cambridge University Press:  11 August 2011

N. Izard*
Affiliation:
Institut d’Électronique Fondamentale, CNRS-UMR 8622, Univ. Paris-Sud, 91405 Orsay, France National Institute of Advance Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
E. Gaufrès
Affiliation:
Institut d’Électronique Fondamentale, CNRS-UMR 8622, Univ. Paris-Sud, 91405 Orsay, France
X. Le Roux
Affiliation:
Institut d’Électronique Fondamentale, CNRS-UMR 8622, Univ. Paris-Sud, 91405 Orsay, France
S. Kazaoui
Affiliation:
National Institute of Advance Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
Y. Murakami
Affiliation:
Global Edge Institute, Tokyo Institute of Technology, Tokyo, Japan
D. Marris-Morini
Affiliation:
Institut d’Électronique Fondamentale, CNRS-UMR 8622, Univ. Paris-Sud, 91405 Orsay, France
E. Cassan
Affiliation:
Institut d’Électronique Fondamentale, CNRS-UMR 8622, Univ. Paris-Sud, 91405 Orsay, France
S. Maruyama
Affiliation:
Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
L. Vivien
Affiliation:
Institut d’Électronique Fondamentale, CNRS-UMR 8622, Univ. Paris-Sud, 91405 Orsay, France
*
Get access

Abstract

Electroabsorption spectroscopy of well-identified index-defined semiconducting carbon nanotubes is reported. The measurement of high definition electroabsorption spectra allows direct indexation with unique nanotube chirality. Results show that at least for a limited range of diameters, electroabsorption is directly proportional to the exciton binding energy of nanotubes. Electroabsorption is a powerful technique which directly probes into carbon nanotube excitonic states, and may become a useful tool for in situ study of excitons in future nanotube-based photonic devices such as electroabsorption modulators.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avouris, P., Chen, J., Freitag, M., Perebeinos, V., Tsang, J., Phys. Stat. Sol. B 243, 3197 (2006)CrossRef
Gaufrès, E., Izard, N., Le-Roux, X., Marris-Morini, D., Kazaoui, S., Cassan, E., Vivien, L., Appl. Phys. Lett. 96,231105 (2010)CrossRef
Wang, F., Dukovic, G., Brus, L., Heinz, T., Science 308, 838 (2005)CrossRef
Lebedkin, S., Hennrich, F., Riowski, O., Kappes, M., Phys. Rev. B 77,165429 (2008)CrossRef
Yang, L., Han, J., Phys. Rev. Lett. 85, 154 (2000)CrossRef
Leeuw, T., Tsyboulski, D., Nikolaev, P., Bachilo, S., Arepalli, S., Weisman, R., Nano Lett. 8, 826 (2008)CrossRef
Lefebvre, J., Fraser, J., Homma, Y., Finnie, P., Appl. Phys. A 78, 1107 (2004)CrossRef
Izard, N., Riehl, D., Anglaret, E., Phys. Rev. B 71, 195417 (2005)CrossRef
Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K., Dai, H., Science 287, 622 (2000)CrossRef
Maultzsch, J., Pomraenke, R., Reich, S., Chang, E., Prezzi, D., Ruini, A., Molinari, E., Strano, M., Thomsen, C., Lienau, C., Phys. Rev. B 72, 241402 (2005)CrossRef
Mohite, A., Gopinath, P., Shah, H., Alphenaar, B., Nano Lett. 8, 142 (2008)CrossRef
Lefebvre, J., Finnie, P., Nano Lett. 8, 1890 (2008)CrossRef
Zhao, H., Mazumdar, S., Phys. Rev. Lett. 98, 166805 (2007)CrossRef
Perebeinos, V., Avouris, P., Nano Lett. 7, 609 (2007)CrossRef
Takenobu, T., Murayama, Y., Iwasa, Y., Appl. Phys. Lett. 89, 263510 (2006)CrossRef
Gadermaier, C., Menna, E., Meneghetti, M., Kennedy, W., Vardeny, Z., Lanzani, G., Nano Lett. 6, 301 (2006)CrossRef
Kishida, H., Nagasawa, Y., Imamura, S., Nakamura, A., Phys. Rev. Lett. 100, 097401 (2008)CrossRef
Arnold, M., Stupp, S., Hersam, M., Nano Lett. 5, 713 (2005)CrossRef
Ghosh, S., Bachilo, S.M., Weisman, R.B., Nat. Nanotechnol. 5, 443 (2010)CrossRef
Nish, A., Hwang, J.Y., Doig, J., Nicholas, R., Nat. Nanotechnol. 2, 640 (2007)CrossRef
Chen, F., Wang, B., Chen, Y., Li, L.J., Nano Lett. 7, 3013 (2007)CrossRef
Izard, N., Kazaoui, S., Hata, K., Okazaki, T., Saito, T., Iijima, S., Minami, N., Appl. Phys. Lett. 92, 243112 (2008)CrossRef
Murakami, Y., Lu, B., Kazaoui, S., Minami, N., Okubo, T., Maruyama, S., Phys. Rev. B 79, 195407 (2009)CrossRef
Gaufrès, E., Izard, N., Vivien, L., Kazaoui, S., Marris-Morini, D., Cassan, E., Opt. Lett. 34, 3845 (2009)CrossRef
Gaufrès, E., Izard, N., Le-Roux, X., Marris-Morini, D., Kazaoui, S., Cassan, E., Vivien, L., Opt. Express 18, 5740 (2010)CrossRef
Campoy-Quiles, M., Etchegoin, P., Bradley, D., Synt. Met. 155, 279 (2005)CrossRef
Aspnes, D., Rowe, J., Phys. Rev. B 5, 4022 (1972)CrossRef
Campbell, I., Hagler, T., Smith, D., Ferraris, J., Phys. Rev. Lett. 76, 1900 (1996)CrossRef
O’Connell, M.J. et al., Science 297, 593 (2002)CrossRef
Capaz, R.B., Spataru, C.D., Ismail-Beigi, S., Louie, S.G., Phys. Rev. B 74, 121401 (2006)CrossRef