Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T18:02:16.528Z Has data issue: false hasContentIssue false

Electric-field-induced forces between two surfaces filled with an insulating liquid: the role of adsorbed water

Published online by Cambridge University Press:  10 June 2014

Yong Jian Wang
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Zuli Xu
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Ping Sheng
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Penger Tong*
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
*
Get access

Abstract

A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the “wet” porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wen, W.-J., Huang, X.-X., Yang, S.-H., Lu, K.-Q., Sheng, P., Nature Mater. 2, 727 (2003)CrossRef
Ma, H.-R., Wen, W.-J., Tam, W.Y., Sheng, P., Phys. Rev. Lett. 77, 2499 (1996)CrossRef
Lu, K.-Q., Shen, R., Wang, X.-Z., Sun, G., Wen, W.J., Liu, J.-X., Chin. Phys. 15, 2476 (2006)
Chen, S.-Y., Huang, X.-X., van der Vegt, N.F.A., Wen, W.-J., Sheng, P., Phys. Rev. Lett. 105, 046001 (2010)CrossRef
Sheng, P., Wen, W.-J., Annu. Rev. Fluid Mech. 44, 143 (2012)CrossRef
Ma, H.-R., Wen, W., Tam, W.Y., Sheng, P., Adv. Phys. 52, 343 (2003)CrossRef
Halsey, T.C., Science 258, 761 (1992)CrossRef
Davis, L.C., J. Appl. Phys. 72, 1334 (1992)CrossRef
Atten, P., Foulc, J.-N., Felici, N., Int. J. Mod. Phys. B 8, 2731 (1994)CrossRef
Filisko, F.E., in Proc. 3rd Int. Conf. electrorheological fluids, edited by Tao, R. (World Scientific, Singapore, 1992), p. 116 Google Scholar
Wang, Z.-Y., Peng, Z., Lu, K.-Q., Wen, W.J., Appl. Phys. Lett. 82, 1796 (2003)CrossRef
Kwek, J.W., Vakarelskia, I.U., Nga, W.K., Hengc, J.Y.Y., Tana, R.B.H., Colloids Surf. A: Physicochem. Eng. Aspects 385, 206 (2011)CrossRef
Stoy, R.D., J. Electrostat. 33, 385 (1994)CrossRef
Davis, L.C., Appl. Phys. Lett. 60, 319 (1992)CrossRef
Washizu, M., Jones, T.B., IEEE Trans. Ind. Appl. 32, 233 (1996)CrossRef
Cox, B.J., Thamwattana, N., Hill, J.M., Appl. Phys. Lett. 88, 152903 (1992)CrossRef
Chan, H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F., Science 291, 1941 (2001)CrossRef
Capasso, F., Munday, J.N., Iannuzzi, D., Chan, H.B., IEEE J. Sel. Top. Quantum Electron. 13, 400 (2007)CrossRef
van Zwol, P.J., Ph.D. thesis series: 2011-03, Zernike Institute,
Weast, R.C., Astle, M.J. (Eds.), in Handbook of Chemistry and Physics, 62nd edn. (CRC, Boca Raton, 1981)Google Scholar
Springer Materials – The Landolt-Börnstein Database (Springer-Verlag, Berlin, 2008)
Charlaix, E., Crassous, J., J. Chem. Phys. 122, 184701 (2005)CrossRef
Jones, R., Pollock, H.M., Cleaver, J.A.S., Hodges, C.S., Langmuir 18, 8045 (2002)CrossRef
Behrens, S.H., Grier, D.G., J. Chem. Phys. 115, 6716 (2001)CrossRef
Bower, M.J.D., Bank, T.L., Giese, R.F., van Oss, C.J., Colloids Surf. A: Physicochem. Eng. Aspects 362, 90 (2010)CrossRef
Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley-Interscience, New York, 1979)Google Scholar
Zhuravlev, L.T., Colloids Surf. A: Physicochem. Eng. Aspects 173, 1 (2000)CrossRef
Knauth, L.P., Epstein, S., Am. Mineral. 67, 510 (1982)
Zhu, P., Masuda, Y., Koumoto, K., Biomaterials 25, 3915 (2004)CrossRef
Dey, F.K., Cleaver, J.A.S., Zhdan, P.A., Advanced Powder Tech. 11, 401 (2000)CrossRef
Jones, R., Pollock, H.M., Cleaver, J.A.S., Hodges, C.S., Langmuir 18, 8045 (2002)CrossRef
Sumner, A.L. et al., Phys. Chem. Chem. Phys. 6, 604 (2004)CrossRef
Crowley, J.M., Proc. ESA Annual Meeting on Electrostatics, Paper D1 (2008)
Kendall, J., J. Am. Chem. Soc. 38, 1480 (1916)CrossRef
Awakunit, Y., Calderwood, J.H., J. Phys. D: Appl. Phys. 5, 1038 (1972)CrossRef
Wright, M.R., An Introduction to Aqueous Electrolyte Solutions (Wiley, New Jersey, USA, 2007)Google Scholar
Pashley, R.M., Rzechowicz, M., Pashley, L.R., Francis, M.J., J. Phys. Chem. B 109, 1231 (2005)CrossRef
Chen, W., Tan, S.-S., Zhou, Y., Ng, T.-K., Ford, W.T., Tong, P., Phys. Rev. E 79, 041403 (2009)CrossRef
Kappl, M., Butt, H.-J., Part. Part. Syst. Charact. 19, 129 (2002)3.0.CO;2-G>CrossRef
Venkatesan, V.K., Suryanarayana, C.V., J. Phys. Chem. 60, 775 (1956)CrossRef