Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T15:08:34.337Z Has data issue: false hasContentIssue false

Electrical contact resistance of a thin oxide layer with a low mechanical load

Published online by Cambridge University Press:  09 December 2013

Sang-Kuk Kim
Affiliation:
Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea
Han Kwak
Affiliation:
Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea
Jongjin Lee*
Affiliation:
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
Insuk Yu
Affiliation:
Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea
*
Get access

Abstract

The electrical contact resistance of a vertical binary contact between stainless steel balls with a low mechanical load was investigated. Using a statistical approach, we measured the voltage at which the dielectric breakdown occurs within a thin surface oxide layer and the distribution of the contact resistance. Electrical load-bearing conduction through a thin insulating layer was found to occur through two possible sequential processes. In both cases, once a conduction path is formed, the melting of bridges as in conventional contact theory is involved. This suggests that conduction through an oxide layer with a low mechanical load depends mainly on breakdown-induced bridges. Furthermore, the distribution of such path’s resistance shows the log-normal distribution with a long tail toward high resistance.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kongsjorden, H., Kulsetås, J., Sletbak, J., IEEE Trans. Components Hybrids Manuf. Technol. 2, 32 (1979)CrossRef
Neufeld, C.N., Rieder, W.F., IEEE Trans. Components Hybrids Manuf. Technol. 18, 369 (1995)CrossRef
Dickrell, D.J. III, Dugger, M.T., IEEE Trans. Components Hybrids Manuf. Technol. 30, 75 (2007)CrossRef
Holm, R., Electrical Contacts, 4th edn (Springer-Verlag, Berlin, 1967)CrossRefGoogle Scholar
Greenwood, J.G., Williamson, J.B.P., Proc. R. Soc. Lond. 295, 300 (1966)CrossRef
Greenwood, J.G., Brit. J. Appl. Phys. 17, 1621 (1966)CrossRef
Sharvin, Y.V., J. Exp. Theor. Phys. 48, 984 (1965)
Simmons, J.G., J. Appl. Phys. 34, 2581 (1963)CrossRef
Kogut, L., Komvopoulos, K., J. Appl. Phys. 95, 576 (2004)CrossRef
Hickmott, T.W., J. Appl. Phys. 100, 083712 (2006)CrossRef
Boksnier, J., Leath, P.L., Phys. Rev. E 57, 3531 (1998)CrossRef
Lee, J.S., Lee, S.B., Chang, S.H., Gao, L.G., Kang, B.S., Lee, M.-J., Kim, C.J., Noh, T.W., Kahng, B., Phys. Rev. Lett. 105, 205701 (2010)CrossRef
Landauer, R., IBM J. Res. Devel. 1, 223 (1957)CrossRef
Landauer, R., J. Phil. Mag. 21, 863 (1970)CrossRef
van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., Foxon, C.T., Phys. Rev. Lett. 60, 848 (1988)CrossRef
Timsit, R.S., IEEE Trans. Compon. Packag. Technol. 22, 85 (1999)CrossRef
Kogut, L., Komvopoulos, K., J. Appl. Phys. 94, 3153 (2003)CrossRef
Mikrajuddin, A., Shi, F.G., Kim, H.K., Okuyama, K., Mat. Sci. Semi. Proc. 2, 321 (1999)CrossRef
Krishnan, S., Stefanskos, E., Bhansali, S., Thin Solid Films 516, 2244 (2008)CrossRef