Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T17:39:15.490Z Has data issue: false hasContentIssue false

Efficient generalized source field computation for h-oriented magnetostatic formulations

Published online by Cambridge University Press:  28 January 2011

P. Dłotko
Affiliation:
Jagiellonian University, Institute of Computer Science, Łojasiewicza 6, 30348 Kraków, Poland
R. Specogna*
Affiliation:
Università di Udine, Dipartimento of Ingegneria Elettrica, Gestionale e Meccanica, Via delle Scienze 208, 33100 Udine, Italy
Get access

Abstract

A technique based on a tree-cotree decomposition, called Spanning Tree Technique (STT) in this paper, has been shown to be simple and efficient to compute the generalized source magnetic fields for h-oriented magnetostatic formulations when solenoidal source electric currents over the faces of the mesh are given as input. Yet, it has been recently shown that STT may frequently fail in practice.Other techniques, which circumvent STT problems, have been proposed in literature. However, all of them greatly worsen the computational complexity and memory requirements regarding the source field computation.The aim of this paper is to present a generalization of STT called Extended Spanning Tree Technique (ESTT), which is provably general and it retains the STT computational efficiency.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dular, P., Henrotte, F., Robert, F., Genon, A., Legros, W., IEEE Trans. Magn. 33, 1398 (1997) CrossRef
Webb, J.P., Forghani, B., IEEE Trans. Magn. 25, 4126 (1989) CrossRef
Le Ménach, Y., Clénet, S., Piriou, F., IEEE Trans. Magn. 34, 2509 (1998) CrossRef
Henrotte, F., Hameyer, K., IEEE Trans. Magn. 39, 1167 (2003) CrossRef
Henneron, T., Clenet, S., Dular, P., Piriou, F., J. Comput. Appl. Math. 215, 438 (2008) CrossRef
Dłoko, P., Specogna, R., SIAM J. Numer. Anal. 48, 1601 (2010) CrossRef
J.R. Munkres, Elements of algebraic topology (Perseus Books, Cambridge, MA, 1984)
Dłotko, P., Specogna, R., Trevisan, F., Comput. Meth. Appl. Mech. Eng. 198, 3765 (2009) CrossRef
G. Strang, Linear algebra and its applications, 3rd edn. (Thomson Business Information, Stanford, USA, 2003)
Biro, O., Preis, K., Vrisk, G., Richter, K.R., IEEE Trans. Magn. 29, 1329 (1993) CrossRef
T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (McGraw-Hill, 2002)
A. Murphy, Masters thesis, Boston University, 1991
Cendes, Z., Badics, Z., IEEE Trans. Magn. 43, 1241 (2007)
Midtgård, O.-M., Nilssen, R., IEEE Trans. Magn. 34, 2652 (1998) CrossRef
Geuzaine, C., Meys, B., Henrotte, F., Dular, P., Legros, W., IEEE Trans. Magn. 35, 1438 (1999) CrossRef
Preis, K., Bardi, I., Biro, O., Magele, C., Vrisk, G., Richter, K.R., IEEE Trans. Magn. 28, 1056 (1992) CrossRef
N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference (Addison-Wesley, USA, 1999)
Ziegler, G.M., Discrete Comput. Geom. 19, 159 (1998) CrossRef
Henneron, T., Piriou, F., Tounzi, A., Clénet, S., Bastos, J.P.A., Sadowski, N., J. Microw. Optoelectron. Electromagn. Appl. 8, 135 (2009)
The Eigen Library, http://eigen.tuxfamily.org