Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T16:39:44.754Z Has data issue: false hasContentIssue false

Effects of the Fe3+/Sr2+ molar ratio on the exchange-coupling of the composite and single-phase SrFe12O19

Published online by Cambridge University Press:  20 March 2013

Yuanfeng Xu
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Yongqing Ma*
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Xian Zhang
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Ganhong Zheng
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Zhenxiang Dai
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Qian Ma
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Fenlian Zan
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Guang Li
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
Mingzai Wu
Affiliation:
Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China
*
Get access

Abstract

It has been systematically investigated about the magnetic properties of the composite and single-phase SrFe12O19 prepared with the precursor of different Fe3+/Sr2+ molar ratios of 12:1, 11:1 and 10:1, respectively. With increasing the calcinations temperature, the coercivity of all samples decreases which can be determined by the stress model. The δm(H) results indicate that the intergrain exchangecoupling interaction exists both in composite and in single-phase SrFe12O19, resulting in the remanence magnetization enhancement, and the magnetostatic interaction become dominant in the samples with higher calcinations temperatures. The irreversible susceptibilities χirr(H) curves show that there may exhibit the exchange-spring behavior in the composite SrFe12O19 with more soft magnetic γ-Fe2O3, and the irreversible switching field may be qualitatively used to determine the coercivity magnitude.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Topal, U., Bakan, H.I., J. Eur. Ceram. Soc. 30, 3167 (2010)CrossRef
Fu, Y.-P., Lin, C.-H., Pan, K.-Y., J. Alloys Compd. 349, 228 (2003)CrossRef
Iqbal, M.J., Ashiq, M.N., Hernandez-Gomez, P., Munoz, J.M., J. Magn. Magn. Mater 320, 881 (2008)CrossRef
Song, F., Shen, X.Q., Xiang, J., Zhu, Y.W., J. Alloys Compd. 507, 297 (2010)CrossRef
Rezlescu, N., Doroftei, C., Rezlescu, E., Popa, P.D., J. Alloys Compd. 451, 492 (2008)CrossRef
Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Dai, J.M., Song, W.H., J. Magn. Magn. Mater. 320, 2746 (2008)CrossRef
Wang, J.F., Ponton, C.B., Harris, I.R., J. Alloys Compd. 403, 104 (2005)CrossRef
Brito, P.C.A., Gomes, R.F., Duque, J.G.S., Macedo, M.A., Physica B 384, 91 (2006)CrossRef
Ding, J., Miao, W.F., McCormick, P.G., Street, P., J. Alloys Compd. 281, 32 (1998)CrossRef
Guo, Z.B., Ding, W.P., Zhong, W., Zhang, J.R., Du, Y.W., J. Magn. Magn. Mater. 175, 333 (1997)CrossRef
Nikkhah-Moshaie, R., Ataie, A., Seyyed Ebrahimi, S.A., J. Alloys Compd. 429, 324 (2007)CrossRef
Liu, X.S., Zhong, W., Gu, B.X., Du, Y.W., J. Appl. Phys. 92, 1028 (2002)CrossRef
Skomski, R., Coey, J.M.D., IEEE Trans. Magn. 29 2860 (1993)CrossRef
Bader, S.D., Rev. Mod. Phys. 78, 1 (2006)CrossRef
Monteiro, P.M.S., Schmool, D.S., Phys. Rev. B 81, 214439 (2010)CrossRef
Pei, W.L., Qin, G.W., Ren, Y.P., Li, S., Wang, T., Hasegawa, H., Ishio, S., Yamane, H., Acta Mater. 59, 4818 (2011)CrossRef
Park, B.G., Wunderlich, J., Martí, X., Hollý, V., Kurosaki, Y., Yamada, M., Yamamoto, H., Nishide, A., Hayakawa, J., Takahashi, H., Shick, A.B., Jungwirth, T., Nature Mater. 10, 347 (2011)CrossRef
Liu, X.Y., Wang, J., Gan, L.-M., Ng, S.-C., Ding, J., J. Magn. Magn. Mater. 184, 344 (1998)CrossRef
Anis-ur-Rehman, M., Asghar, G., J. Alloys Compd. 509, 435 (2011)CrossRef
Zhang, L.Y., Li, Z.W., J. Alloys Compd. 469, 422 (2009)CrossRef
Hessien, M.M., Rashad, M.M., El-Barawy, K., J. Magn. Magn. Mater 320, 336, (2008)CrossRef
Zhou, S.M., Zhang, X.T., Gong, H.C., Zhang, B., Wu, Z.S., Du, Z.L., Wu, S.X., J. Phys. Condens. Matter 20, 075217 (2008)CrossRef
Hadjipanayis, G.C., Gong, W., J. Appl. Phys. 64, 5559 (1998)CrossRef
Soares, J.M., Cabral, F.A.O., de Araújo, J.H., Machado, F.L.A., Appl. Phys. Lett. 98, 072502 (2011)CrossRef
O’Grady, K., EI-Hilo, M., Chantrell, R.W., IEEE Trans. Magn. 29, 2608 (1993)CrossRef
Garcia-Casillas, P.E., Beesley, A.M., Bueno, D., Matutes-Aquino, J.A., Martinez, C.A., J. Alloys Compd. 369, 185 (2004)CrossRef
Kodama, N., J. Magn, Magn. Mater. 224, 113 (2001)CrossRef
Patel, V., EI-Hilo, M., O’Grady, K., Chantrell, R.W., J. Phys. D: Appl. Phys. 26, 1453 (1993)CrossRef