Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T16:58:48.466Z Has data issue: false hasContentIssue false

Effect of thermal treatments on the morphological and optoelectronic properties of the silicon nanowires

Published online by Cambridge University Press:  31 October 2012

M. Karyaoui*
Affiliation:
Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif, Tunisia
H. Kaouach
Affiliation:
Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif, Tunisia
S. Ben Yahya
Affiliation:
Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif, Tunisia
W. Dimassi
Affiliation:
Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif, Tunisia
J.C. Harmand
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, route de Nozay, 91460 Marcoussis, France
M. Amlouk
Affiliation:
Unité de Physique des dispositifs à Semi-conducteurs UPDS, Faculté des Sciences de Tunis, Tunis El Manar 2092, Tunisia
*
Get access

Abstract

This work presents additional arguments about the enhancement of optical and electrical properties of SiNWs obtained by chemical etching and the beneficial effect of the formation of ultrathin film of SiO2 by a heat treatment at 900 and 1000 °C reported recently by Karyaoui et al. in [Eur. Phys. J. Appl. Phys. 58, 20103 (2012)]. In the actual study, we report the effect of this thermal oxidation treatment on the morphological and optoelectronic properties of silicon nanowires (SiNWs). The SEM and AFM observations exhibit indeed a remarkable change of the surface shape after this oxidation. On the other hand, the LBIC measurements of the SiNWs reveal that the thermal treatment improves the optoelectronic response at 900 °C and the effective diffusion length increases from 150 μm for untreated SiNWS to 235 μm after thermal treatment.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kang, K., Lee, H.-S., Han, D.-W., Kim, G.-S., Lee, D., Lee, G., Kang, Y.-M., Jo, M.-H., Appl. Phys. Lett. 96, 53110 (2010)CrossRef
Peng, I., Strohsahl, C.M., Leach, K.E., Krauss, T.D., Miller, B.L., ACS Nano 3, 2265 (2009)CrossRef
Peng, K.Q., Wang, X., Lee, S.T., Appl. Phys. Lett. 95, 243112 (2009)CrossRef
Hochbaum, A.I., Gargas, D., Hwang, Y.J., Yang, P.D., Nano Lett. 9, 3550 (2009)CrossRef
Hochbaum, A.I., Chen, R.K., Delgado, R.D., Liang, W.J., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.D., Nature 451, 163 (2008)CrossRef
Qu, Y.Q., Liao, L., Cheng, R., Wang, Y., Lin, Y.C., Huang, Y., Duan, X.F., Nano Lett. 10, 1941 (2010)CrossRef
Sanjay, K.S., Dinesh, K., Singh, P.K., Kar, M., Vikram, K., Husain, M., Solar Energy Mater. Solar Cells 94, 1506 (2010)
Schubert, L., Werner, P., Zakharov, N.D., Gerth, G., Kolb, F.M., Long, L., Gosele, U., Tang, T.Y., Appl. Phys. Lett. 84, 4968 (2004)CrossRef
Tang, Y.H., Zheng, Y.F., Lee, C.S., Lee, S.T., Chem. Phys. Lett. 328, 346 (1999)CrossRef
Sun, X.Z., Lin, L.H., Li, Z.C., Zhang, Z.J., Feng, J.Y., Appl. Surf. Sci. 257, 3861 (2011)CrossRef
Zhu, Meiguang, Chen, Xuejiao, Wang, Zhiliang, Chen, Yun, Ma, Dianfei, Peng, Hui, Zhang, Jian, Chem. Phys. Lett. 511, 106 (2011)CrossRef
Huang, Chun-Ying, Yang, Ying-Jay, Chen, Ju-Ying, Wang, Chun-Hsiung, Chen, Yang-Fang, Hong, Lu-Sheng, Liu, Chie-Sheng, Wu, Chia-Yin, Appl. Phys. Lett. 97, 013503 (2010)CrossRef
Ben Jaballah, A., Moumni, B., Bessais, B., Sol. Energy 86, 1955 (2012)CrossRef
Li, Huilin, Jian, Zhang, Tao, Bairui, Wan, Lijuan, Gong, Wenli, Physica E 41, 600 (2009)CrossRef
Karyaoui, M., Bardaoui, A., Ben Rabha, M., Harmand, J.C., Amlouk, M., Eur. Phys. J. Appl. Phys. 58, 20103 (2012)CrossRef
Dimassi, W., Derbali, L., Bouaïcha, M., Bessaïs, B., Ezzaouia, H., Sol. Energy 85, 350 (2011)CrossRef
Davidson, S.M., Dimitriadis, C.A., Appl. Surf. Sci. 36, 554 (1989)
Ioannou, D.E., Gledhill, R.J., IEEE Trans. Electron Devices 30, 577 (1983)CrossRef
Rajkanan, K., Singh, R., Shewchun, J., Solid-State Electron. 22, 793 (1979)CrossRef