Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T17:33:12.187Z Has data issue: false hasContentIssue false

Effect of co-solvent on structural and morphological properties of ZnO aerogel prepared by a modified sol-gel process

Published online by Cambridge University Press:  21 April 2014

Malaaz Meddouri
Affiliation:
Laboratoire de Génie de l'Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
Djamel Djouadi*
Affiliation:
Laboratoire de Génie de l'Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
Azeddine Chelouche
Affiliation:
Laboratoire de Génie de l'Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
Tahar Touam
Affiliation:
Laboratoire des Semi-conducteurs, Université Badji Mokhtar, BP 12, 23000 Annaba, Algeria
Abdelhamid Chergui
Affiliation:
Département de Physique, Faculté des Sciences, Université de Sétif, 19000 Sétif, Algeria
*
Get access

Abstract

Nanocrystalline zinc oxide (ZnO) aerogel powders were synthesized using a modified sol-gel process. Ethanol, acetone and methanol were used as supercritical drying fluids. Effects of co-solvent on morphological and structural properties were investigated. The as prepared powders were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The XRD results show that drying in solvents mixture affects the crystalline quality and acts as a compression agent by exerting stress on the lattice parameters. SEM micrographs demonstrate that co-solvent plays a key role in controlling ZnO nucleation and favors the particles agglomeration with increasing the pressure and the temperature. The EDAX analysis shows that the obtained ZnO nanopowder with ethanol and acetone as co-solvent is pure with different stoichiometries (an excess of oxygen (O) with ethanol and zinc (Zn) atoms with acetone). However, when methanol is used as supercritical drying fluid, the obtained nanopowder contains an excess of carbon (C) atoms. FTIR absorption bands are more intense for aerogel synthesized by drying in methanol indicating the presence of more C-H bounds responsible of the low rate agglomeration of the ZnO crystallites.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Norton, D.P., Heo, Y.W., Ivill, M.P., Pearton, S.J., Chosholm, M.F., Steiner, T., Mater. Today 7, 34 (2004)CrossRef
Xiao, H., Sun, M., Li, C., Yang, D., Han, B., He, S., Nucl. Instrum. Methods B 266, 3275 (2008)CrossRef
Yan, X., Itoh, T., Dai, S., Ozaki, Y., Fang, Y., J. Phys. Chem. Solids 74, 1127 (2013)CrossRef
Li, J.L., Chen, G.H., Yuan, C.L., Ceram. Int. 39, 2231 (2013)
Sahoo, S., Bhowmick, A.K., J. Appl. Polym. Sci. 106, 3077 (2007)CrossRef
Sun, Z.P., Liu, L., Zhang, L., Jia, D.Z., Nanotechnology 17, 2266 (2006)CrossRef
Sun, L., Shao, R., Chen, Z., Tang, L., Dai, Y., Ding, J., Appl. Surf. Sci. 258, 5455 (2012)CrossRef
Donkova, B., Dimitrov, D., Kostadinov, M., Mitkova, E., Mehandjiev, D., Mater. Chem. Phys. 123, 563 (2010)CrossRef
Li, Z., Huang, X., Liu, J., Li, Y., Li, G., Mater. Lett. 62, 1503 (2008)CrossRef
Kim, J.Y., Cho, J.W., Kim, S.H., Mater. Lett. 65, 1161 (2011)CrossRef
Tao, Y., Fu, M., Zhao, A., He, D., Wang, Y., J. Alloys Compd. 489, 99 (2010)CrossRef
Bacsa, R., Kihn, Y., Verelst, M., Dexpert, J., Bacsa, W., Serp, P., Surf. Coat. Technol. 201, 9200 (2007)CrossRef
Ozcan, S., Can, M.M., Ceylan, A., Mater. Lett. 64, 2447 (2010)CrossRef
Guo, L., Ji, Y.L., Xu, H., Simon, P., Wu, Z., J. Am. Chem. Soc. 124, 14864 (2002)CrossRef
Dev, A., Kar, S., Chakrabarti, S., Chaudhuri, S., Nanotechnology 17, 1533 (2006)CrossRef
Djouadi, D., Aksas, A., Chelouche, A., Ann. Chim. - Sci. Mat. 35, 255 (2010)CrossRef
Zak, A.K., Majid, W.H.A., Darroudi, M., Yousefi, R., Mater. Lett. 65, 70 (2011)CrossRef
Ohyama, M., Kozuka, H., Yoko, T., Thin Solid Films 306, 78 (1997)CrossRef
Wang, Z., Huang, B., Qin, X., Zhang, X., Wang, P., Wei, J., Zhan, J., Jing, X., Liu, H., Xu, Z., Cheng, H., Wang, X., Zheng, Z., Mater. Lett. 63, 130 (2009)CrossRef
Angwafor, N.G.N., Riler, D.J., Phys. Status Solidi A 205, 2351 (2008)CrossRef
Gao, P.X., Ding, Y., Mai, W.J., Hughes, W.L., Lao, C.S., Wang, Z.L., Science 309, 1700 (2005)CrossRef
Kanade, K.G., Kale, B.B., Aiyer, R.C., Das, B.K., Mater. Res. Bull. 41, 590 (2006)CrossRef
Wang, M., Hahn, S.H., Kim, J.S., Chung, J.S., Kim, E.J., Koo, K.K., J. Cryst. Growth 310, 1213 (2008)CrossRef
Kavitha, M.K., Haripadmam, P.C., Gopinath, P., Krishnan, B., John, H., Mater. Res. Bull. 48, 1967 (2013)
Rezapour, M., Talebian, N., Mater. Chem. Phys. 129, 249 (2011)CrossRef
Ma, J., Jiang, C., Xiong, Y., Xu, G., Powder Technol. 167, 49 (2006)CrossRef
El Mir, L., Amlouk, A., Barthou, C., Alaya, S., Physica B 388, 412 (2007)CrossRef
El Mir, L., Elghoul, J., Alaya, S., Ben Salem, M., Barthou, C., von Bardeleben, H.J., Physica B 403, 1770 (2008)CrossRef
Ben Ayadi, Z., El Mir, L., Djessas, K., Alaya, S., Mater. Sci. Eng. C 28, 613 (2008)CrossRef
Sofiani, Z., Derkowska, B., Dalasiñski, P., Wojdy, M., Dabosseignon, S., Alaoui, M., Lamrani, , Dghoughi, L., Ba, W., Opt. Commun. 267, 433 (2006)CrossRef
Deschanvres, J.L., Bochu, B., Joubert, J.C., J. Phys. III 4, 1243 (1994)
Li, G.R., Lu, X.H., Zhao, W.X., Su, C.Y., Tong, Y.X., Cryst. Growth Des. 8, 1276 (2008)CrossRef
Foo, K.L., Kashif, M., Hashim, U., Liu, Wei-Wen, Ceram. Int. 40, 753 (2014)CrossRef