Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T18:04:04.040Z Has data issue: false hasContentIssue false

Dynamic UV microstereolithography

Published online by Cambridge University Press:  15 November 2002

S. Monneret*
Affiliation:
Département de Chimie Physique des Réactions, ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex, France
H. Le Gall
Affiliation:
Département de Chimie Physique des Réactions, ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex, France
V. Badé
Affiliation:
Département de Chimie Physique des Réactions, ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex, France
F. Devaux
Affiliation:
Laboratoire d'Optique P.M. Duffieux, Université de Franche-Comté, 25030 Besançon Cedex, France
A. Mosset
Affiliation:
Laboratoire d'Optique P.M. Duffieux, Université de Franche-Comté, 25030 Besançon Cedex, France
E. Lantz
Affiliation:
Laboratoire d'Optique P.M. Duffieux, Université de Franche-Comté, 25030 Besançon Cedex, France
Get access

Abstract

A new process of microstereolithography to manufacture freeform solid three-dimensional micro-components with outer dimensions in the millimetre size range is presented. The process, based on the use of a liquid crystal display as a dynamic mask generator, works with conventional industrial UV-sensitive stereolithographic materials. The main innovation of the process consists in using the optical frequency up-conversion of images from the visible to the UV range in order to overcome the opacity of LCD's in the UV domain. 400 × 400 points up-converted images have been obtained to generate solid three-dimensional objects.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P.F. Jacobs, Rapid Prototyping and Manufacturing: Fondamentals of Stereolithography (The Society of Manufacturing Engineers, Dearborn, MI, 1992)
Carroza, C., Croce, N., Magnani, B., Dario, P., J. Micromech. Microeng. 5, 175 (1995)
Nakamoto, T., Yamaguchi, K., Abraha, P., Mishima, K., J. Micromech. Microeng. 6, 240 (1996) CrossRef
Zhang, X., Jiang, X.N., Sun, C., Sens. and Actuators A 77, 149 (1999) CrossRef
Bertsch, A., Zissi, S., Jézéquel, J.Y., Corbel, S., André, J.C., Microsyst. Tech. 3, 42 (1997) CrossRef
Farsari, M., Claret-Tournier, F., Huang, S., Chatwin, C.R., Budgett, D.M., Birch, P.M., Young, R.C.D., Richardson, J.D., J. Mater. Proc. Technol. 107, 167 (2000) CrossRef
Monneret, S., Loubère, V., Corbel, S., Proc SPIE 3680, 553 (1999) CrossRef
Bertsch, A., Bernhard, P., Vogt, C., Renaud, P., Rapid Prototyp. J. 6, 259 (2000) CrossRef
Farsari, M., Huang, S., Birch, P., Claret-Tournier, F., Young, R., Budgett, D., Bradfield, C., Chatwin, C., Opt. Lett. 24, 549 (1999) CrossRef
Midwinter, J., Warner, J., J. Appl. Phys. 38, 519 (1967) CrossRef
Midwinter, J., Appl. Phys. Lett. 12, 68 (1968) CrossRef
Firester, A., J. Appl. Phys. 40, 4842 (1969) CrossRef
Chiou, W.C., Pace, F., Appl. Phys. Lett. 20, 44 (1972) CrossRef
Faris, G., Banks, M., Opt. Lett. 19, 1813 (1994) CrossRef
Devaux, F., Mosset, A., Lantz, E., Monneret, S., Le Gall, H., Appl. Opt. 40, 4953 (2001) CrossRef
Devaux, F., Lantz, E., J. Opt. Soc. Am. B 12, 2245 (1995) CrossRef
Lantz, E., Devaux, F., Quantum Semi-Class. Opt. 9, 279 (1997) CrossRef
Lantz, E., Devaux, F., J. Opt. A: Pure Appl. Opt. 2, 362 (2000) CrossRef
Wu, B., Chen, N., Chen, C., Deng, D., Xu, Z., Opt. Lett. 14, 1080 (1989) CrossRef
Onuh, S.O., Hon, K.B.H., Int. J. Mach. Tools Manufact. 38, 329 (1998) CrossRef