Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T18:15:08.509Z Has data issue: false hasContentIssue false

Dynamic properties of a system of cobalt nanoparticles

Published online by Cambridge University Press:  15 January 2002

P. C. Fannin*
Affiliation:
Department of Electronic & Electrical Engineering, Trinity College, Dublin 2, Ireland
A. Slawska-Waniewska
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
P. Didukh
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
A. T. Giannitsis
Affiliation:
Department of Electronic & Electrical Engineering, Trinity College, Dublin 2, Ireland
S. W. Charles
Affiliation:
Department of Chemistry, University College of North Wales, Bangor LL57 2UW, UK
Get access

Abstract

Measurements of the complex susceptibility, $\chi(\omega)=\chi'(\omega)-{\rm i}\chi''(\omega)$, as a function of the frequency (100 Hz–18 GHz) and polarizing field (0–90 kA m−1) at room temperature together with static magnetic measurements over the temperature range 4–300 K, are reported for a colloidal suspension of cobalt nanoparticles. The transition of the cobalt particles to the superparamagnetic state are supported by the temperature dependencies of field cooling (FC) and zero field cooling (ZFC) magnetization measurements. From these measurements, which show a typical blocking behaviour of an assembly of superparamagnetic particles with a wide distribution of blocking temperatures, the exponential pre-factor $\tau_0$ of Brown's equations for Néel relaxation, is found to be equal to 9.2 × 10−10 s. Measurement of the complex susceptibility $\chi(\omega)$ over this broad frequency range, with an upper frequency value corresponding to three times that previously reported in our measurements on cobalt, has enabled the presence of both resonance and Néel relaxation mechanisms to be identified. From the Néel component, a further value for $\tau_0$ was evaluated and shown to be in close agreement with that obtained from the ZFC data. Data on the after-effect function, realised by Fourier transformation of the $\chi''(\omega)$ component, is also presented.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Néel, L., Ann. Geophys. 5, 99 (1949).
Brown, W.F., Appl. Phys. 34, 1319 (1963). CrossRef
M.I. Shliomis, Yu.L. Raikher, IEEE Trans. Magn. Mag-16, 237 (1980).
Anderson, J.C., Donovan, B., Proc. Phys. Soc. B 75, 149 (1960). CrossRef
Brown, W.F., Phys. Rev. 130, 1677 (1963). CrossRef
M.I. Shliomis, Yu.L. Raikher, IEEE Trans. Magn. Mag-16, 237 (1980).
Shliomis, M.I., Sov. Phys.-Usp. 17, 53 (1974). CrossRef
P. Debye, Polar Molecules (New York, The Chemical Catalog Company Ltd, 1929).
Raikher, Y.L., Shliomis, M.I., Sov. Phys. JETP 40, 526 (1975).
B.K.P. Scaife, Principles of dielectrics (London, Oxford Science Publications, 1998).
Fannin, P.C., Relihan, T., Charles, S.W., J. Phys. D: Appl. Phys. 30, 533 (1997). CrossRef
Charles, S.W., Wells, S., Magnetohydrodynamics 26, 288 (1990).
Fannin, P.C., Scaife, B.K.P., Charles, S.W., J. Phys. E: Sci. Instrum. 19, 238 (1986). CrossRef
Roberts, S., von Hippel, A.R., J. Appl. Phys. 17, 610 (1946). CrossRef
Fannin, P.C., Relihan, T., Charles, S.W., J. Phys. D: Appl. Phys. 28, 2003 (1995). CrossRef
Fannin, P.C., Perov, P.A., Charles, S.W., J. Phys. D: Appl. Phys. 32, 1583 (1999). CrossRef
M.A. Stuchly, S.S. Stuchy, IEEE. Trans. Instrum. Meas. IM-29, 76 (1980).
Wei, Y.Z., Sridah, S., Rev. Sci. Instrum. 60, 3041 (1989). CrossRef
Tari, A., Popplewell, J., Charles, S.W., J Magn. Magn. Mater. 15-18, 1125 (1980). CrossRef
Ngo, A.T., Bonville, P., Pileni, M.P., Eur. Phys. J. B 9, 583 (1999). CrossRef
Johansson, C., Hanson, M., Hendriksen, P.V., S. Morup. J. Magn. Magn. Mater. 122, 125 (1993). CrossRef
Sappey, R., Vincent, E., Hadacek, N., Chaput, F., Boilot, J.P., Zins, D., Phys. Rev. B 56, 14551 (1997). CrossRef
Fannin, P.C., Charles, S.W., Relihan, T., J. Magn. Magn. Mater. 162, 319 (1996). CrossRef
Fannin, P.C., Kinsella, L., Charles, S.W., J. Phys. D: Appl. Phys. 30, 533 (1997). CrossRef
Kneller, E., Wohlfarth, E.P., J. Appl. Phys. 37, 4816 (1966). CrossRef
Dickson, D.P.E., Reid, N.M.K., Hunt, C.A., Williams, H.D., El-Hilo, M., O'Grady, K., J. Magn. Magn. Mater. 125, 345 (1993). CrossRef
V. Schunemann, H. Winkler, H.M. Ziethen, A. Schiller, A.X. Trautwein, Magnetic Properties of Fine Particles (Elsevier Science Publishers, The Netherlands, 1992), p. 371.