Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:08:41.261Z Has data issue: false hasContentIssue false

Dielectric properties of thin insulating layers measuredby Electrostatic Force Microscopy

Published online by Cambridge University Press:  26 February 2010

C. Riedel
Affiliation:
Institut d'Électronique du Sud (IES), UMR CNRS 5214, Université Montpellier II, CC 082, Place E. Bataillon, 34095 Montpellier Cedex, France Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain Departamento de Física de Materiales UPV/EHU, Facultad de Química, Apartado 1072, 20080 San Sebastián, Spain
R. Arinero*
Affiliation:
Institut d'Électronique du Sud (IES), UMR CNRS 5214, Université Montpellier II, CC 082, Place E. Bataillon, 34095 Montpellier Cedex, France
Ph. Tordjeman
Affiliation:
Université de Toulouse, INPT – CNRS, Institut de Mécanique des Fluides (IMFT), 1 allée du Professeur Camille Soula, 31400 Toulouse, France
M. Ramonda
Affiliation:
Laboratoire de Microscopie en Champ Proche (LMCP), Centre de Technologie de Montpellier, Université Montpellier II, CC 082, Place E. Bataillon, 34095 Montpellier Cedex, France
G. Lévêque
Affiliation:
Institut d'Électronique du Sud (IES), UMR CNRS 5214, Université Montpellier II, CC 082, Place E. Bataillon, 34095 Montpellier Cedex, France
G. A. Schwartz
Affiliation:
Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center MPC, Edificio Korta, 20018 San Sebastián, Spain
D. G. de Oteyza
Affiliation:
Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
A. Alegría
Affiliation:
Departamento de Física de Materiales UPV/EHU, Facultad de Química, Apartado 1072, 20080 San Sebastián, Spain Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center MPC, Edificio Korta, 20018 San Sebastián, Spain
J. Colmenero
Affiliation:
Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain Departamento de Física de Materiales UPV/EHU, Facultad de Química, Apartado 1072, 20080 San Sebastián, Spain Centro de Física de Materiales (CSIC-UPV/EHU), Materials Physics Center MPC, Edificio Korta, 20018 San Sebastián, Spain
Get access

Abstract

In order to measure the dielectric permittivity of thin insulting layers, we developed a method based on electrostatic force microscopy (EFM) experiments coupled with numerical simulations. This method allows to characterize the dielectric properties of materials without any restrictions of film thickness, tip radius and tip-sample distance. The EFM experiments consist in the detection of the electric force gradient by means of a double pass method. The numerical simulations, based on the equivalent charge method (ECM), model the electric force gradient between an EFM tip and a sample, and thus, determine from the EFM experiments the relative dielectric permittivity by an inverse approach. This method was validated on a thin SiO2 sample and was used to characterize the dielectric permittivity of ultrathin poly(vinyl acetate) and polystyrene films at two temperatures.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Girard, P., Ramonda, M., Saluel, D., J. Vac. Sci. Technol. B 20, 1348 (2002) CrossRef
Terris, B.D., Stern, J.E., Rugar, D., Mamin, H.J., Phys. Rev. Lett. 63, 2669 (1989) CrossRef
Krayev, A.V., Talroze, R.V., Polymer 45, 8195 (2004) CrossRef
Krayev, A.V., Shandryuk, G.A., Grigorov, L.N., Talroze, R.V., Macromol. Chem. Phys. 207, 966 (2006) CrossRef
Martin, Y., Abraham, D.W., Wickramasinghe, H.K., Appl. Phys. Lett. 52, 1103 (1988) CrossRef
Crider, P.S., Majewski, M.R., Zhang, J., Oukris, H., Israeloff, N.E., Appl. Phys. Lett. 91, 013102 (2007) CrossRef
Crider, P.S., Majewski, M.R., Zhang, J., Oukris, H., Israeloff, N.E., J. Chem. Phys. 128, 044908 (2008) CrossRef
Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., Appl. Phys. Lett. 91, 243110 (2007) CrossRef
Gomila, G., Toset, J., Fumagalli, L., J. Appl. Phys. 104, 024315 (2008) CrossRef
Hu, J., Xiao, X.D., Ogletree, D.F., Salmerón, M., Science 268, 267 (1995) CrossRef
Hao, H.W., Baró, A.M., Sáenz, J.J., J. Vac. Sci. Technol. B 9, 1323 (1991) CrossRef
Terris, B.D., Stern, J.E., Rugar, D., Mamin, H.J., Phys. Rev. Lett. 63, 2669 (1989) CrossRef
Pan, L.H., Sullivan, T.E., Peridier, V.J., Cutler, P.H., Miskovsky, N.M., Appl. Phys. Lett. 65, 2151 (1994) CrossRef
Hochwitz, T., Henning, A.K., Levey, C., Daghlian, C., Slinkman, J., J. Vac. Sci. Technol. B 14, 457 (1996) CrossRef
Hudlet, S., Saint Jean, M., Guthmann, C., Berger, J., Eur. Phys. J. B 2, 5 (1998) CrossRef
Colchero, J., Gil, A., Baró, A.M., Phys. Rev. B 64, 245403 (2001) CrossRef
Mesa, G., Dobado-Fuentes, E., Sáenz, J.J., J. Appl. Phys. 79, 39 (1996) CrossRef
Belaidi, S., Girard, P., Leveque, G., J. Appl. Phys. 81, 1023 (1997) CrossRef
Sacha, G.M., Sahagun, E., Saenz, J.J., J. Appl. Phys. 101, 024310 (2007) CrossRef
E. Durand, Électrostatique, tome III (Masson, Paris, 1966), p. 233
Gómez-Moñivas, S., Sáenz, J.J., Appl. Phys. Lett. 76, 2955 (2000) CrossRef
Gómez-Moñivas, S., Froufe-Pérez, L., Caamaño, A.J., Sáenz, J.J., Appl. Phys. Lett. 79, 4048 (2001) CrossRef
Sacha, G.M., Gómez-Navarro, C., Sáenz, J.J., Gómez-Herrero, J., Appl. Phys. Lett. 89, 173122 (2006) CrossRef
Belaidi, S., Lebon, E., Girard, P., Leveque, G., Pagano, S., Appl. Phys. A 66, S239 (1998) CrossRef
Li, Z.Y., Gu, B.Y., Yang, G.Z., Phys. Rev. B 57, 9225 (1998) CrossRef
Strassburg, E., Boag, A., Rosenwaks, Y., Rev. Sci. Instrum. 76, 083705 (2005) CrossRef
Manzon, L., Girard, P., Arinero, R., Ramonda, M., Rev. Sci. Instrum. 77, 096101 (2006)
Portes, L., Ramonda, M., Arinero, R., Girard, P., Ultramicroscopy 107, 1027 (2007) CrossRef
During the record of the amplitude-distance curve, the tip can be destroyed. We thus recommend to do it at the end of the experiments. Consequently, the adjustable parameter is the lift height. It can vary from positive to negative values, the minimum value corresponding to the height where the tip is in the contact with the sample. In order to maintain the oscillation of the cantilever in a linear regime, we advise to choose a second scan amplitude of approximately 3 or 4 times smaller than δz1, so δz2 ≈6 nm
Hutter, J.L., Bechhoefer, J., Rev. Sci. Instrum. 64, 1868 (1993) CrossRef
Schwartz, G.A., Tellechea, E., Colmenero, J., Alegría, A., J. Non-Cryst. Solids 351, 2616 (2005) CrossRef
Schwartz, G.A., Colmenero, J., Alegría, A., Macromolecules 39, 3931 (2006) CrossRef
Schwartz, G.A., Colmenero, J., Alegría, A., Macromolecules 40, 3246 (2007) CrossRef
Schwartz, G.A., Colmenero, J., Alegría, A., J. Non-Cryst. Solids 353, 4298 (2007) CrossRef
Tyagi, M., Colmenero, J., Alegría, A., J. Chem. Phys. 122, 244909 (2005) CrossRef
Hall, D., Underhill, P., Torkelson, J.M., Polym. Eng. Sci. 38, 2039 (1998) CrossRef
Gomez-Monivas, S., Froufe, L.S., Carminati, R., Greffet, J.J., Saenz, J.J., Nanotechnology 12, 496 (2001) CrossRef
B. Bhushan, H. Fuchs, Applied Scanning Probe Methods II (Springer, 2003), p. 312