Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:20:02.939Z Has data issue: false hasContentIssue false

Dielectric properties of periodic heterostructures:A computational electrostatics approach*

Published online by Cambridge University Press:  15 April 1999

C. Brosseau*
Affiliation:
Laboratoire d'Électronique et Systèmes de Télécommunications, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, B.P. 809, 29285 Brest Cedex, France
A. Beroual*
Affiliation:
Centre de Génie Électrique de Lyon, École Centrale de Lyon, B.P. 163, 36 avenue Guy de Collongue, 69131 Écully Cedex, France
Get access

Abstract

The dielectric properties of heterogeneous materials for various condensed-mattersystems are important for several technologies, e.g. impregnated polymers forhigh-density capacitors, polymer carbon black mixtures for automotive tires and currentlimiters in circuit protection. These multiscale systems lead to challenging problemsof connecting microstructural features (shape, spatial arrangement and sizedistribution of inclusions) to macroscopic materials response (permittivity,conductivity). In this paper, we briefly discuss an ab initio computationalelectrostatics approach, based either on the use of the field calculation packageFLUX3D (or FLUX2D) and a conventional finite elements method, or the use of the fieldcalculation package PHI3D and the resolution of boundary integral equations, forcalculating the effective permittivity of two-component dielectric heterostructures.Numerical results concerning inclusions of permittivity ε 1 with variousgeometrical shapes periodically arranged in a host matrix of permittivityε 2 are provided. Next we discuss these results in terms ofphenomenological mixing laws, analytical theory and connectedness. During the pursuitof these activities, several interesting phenomena were discovered that will stimulatefurther investigation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was presented at the PIERS 98 conference (Progress in Electromagnetics Research Symposium) held at Nantes (France), July 13-17, 1998.

References

R. Landauer, in Electric Transport and Optical Properties of Inhomogeneous Media, edited by J.C. Garland, D.B. Tanner (AIP Conference Proceedings, No. 40, American Institute of Physics, New York, 1978), p. 2.
M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London, 1994).
D. Stauffer, A. Aharoni, Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London, 1992).
Bergman, D.J., Stroud, D., Solid State Phys. 46, 147 (1992). CrossRef
Progress in Electromagnetics Research: Dielectric Properties of Heterogenous Materials, edited by A. Priou, (Elsevier, New-York, 1992) and references therein; see also for a recent review on electrical and optical properties, we refer to the Proceedings of the Second International Conference on Electrical and Optical Properties of Inhomogeneous Media (Physica A 157, (1989)).
Brosseau, C., J. Appl. Phys. 75, 672 (1994). CrossRef
Brosseau, C., Boulic, F., Bourbigot, C., Queffelec, P., Le Mest, Y., Loaëc, J., Beroual, A., J. Appl. Phys. 81, 882 (1997). CrossRef
Boulic, F., Brosseau, C., Le Mest, Y., Loaëc, J., Carmona, F., J. Phys. D: Appl. Phys. 31, 1904 (1998). CrossRef
A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1997).
Sareni, B., Krahenbühl, L., Beroual, A., Brosseau, C., J. Appl. Phys. 80, 1688 (1996). CrossRef
Sareni, B., Krahenbühl, L., Beroual, A., Brosseau, C., J. Appl. Phys. 80, 4560 (1996). CrossRef
Sareni, B., Krahenbühl, L., Beroual, A., Brosseau, C., J. Appl. Phys. 81, 2375 (1997). CrossRef
Boudida, A., Beroual, A., Brosseau, C., J. Appl. Phys. 83, 425 (1998). CrossRef
C.A. Brebbia, The Boundary Element Method for Engineers (Pentech Press, London, 1980); see also O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, (McGraw-Hill, London, 1989), Vol. 1.
W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, New York, 1986).
McPhedran, R.C., McKenzie, D.R., Proc. R. Soc. Lond. A 359, 45 (1978). CrossRef
Tao, R., Chen, Z., Sheng, P., Phys. Rev. B 41, 2417 (1989). CrossRef
Sihvola, A., Kong, J.A., IEEE Trans. Geosci. Remote Sensing 26, 420 (1988)
Liu, C., Shen, L.C., J. Appl. Phys. 73, 1897 (1993). CrossRef
Bergman, D.J., Phys. Rep. 43, 377 (1978)
Milton, G.W., J. Appl. Phys. 52, 5286 (1981). CrossRef
A. Boudida, A. Beroual, C. Brosseau, in Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Atlanta, Georgia, USA, 1998, Vol. 1, pp. 261-264.
Carmona, F., Barreau, F., Delhaes, P., Conet, R., J. Phys. Lett. 41, L531 (1980)
McLachlan, D.S., Blaszkiewicz, M., Newnham, R.E., J. Am. Ceram. Soc. 73, 2187 (1990). CrossRef
Roberts, A.P., Knackstedt, M.A., Phys. Rev. E 54, 2313 (1996). CrossRef
Schäfer, H., Sternin, E., Stannarius, R., Arndt, M., Kremer, F., Phys. Rev. Lett. 76, 2177 (1996). CrossRef