Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:33:07.786Z Has data issue: false hasContentIssue false

Dielectric and structural properties of diffuse ferroelectric phase transition in Pb1.85K1.15Li0.15Nb5O15 ceramic

Published online by Cambridge University Press:  28 January 2011

E. Choukri
Affiliation:
LMCN, F.S.T.G. University Cadi Ayyad Marrakech, Marrakech, Morocco
Y. Gagou
Affiliation:
LPMC, Université de Picardie, 33 rue Saint-Leu, 80039 Amiens Cedex, France
D. Mezzane*
Affiliation:
LMCN, F.S.T.G. University Cadi Ayyad Marrakech, Marrakech, Morocco
Z. Abkhar
Affiliation:
LMCN, F.S.T.G. University Cadi Ayyad Marrakech, Marrakech, Morocco
R. El Moznine
Affiliation:
LPMC, Équipe Physique de l'environnement, Université Chouaib DoukKali, F.S. El Jadida, Morocco
I. Luk'yanchuk
Affiliation:
LPMC, Université de Picardie, 33 rue Saint-Leu, 80039 Amiens Cedex, France
P. Saint-Grégoire
Affiliation:
University of Nîmes, Department of Sciences, Rue du Dr Georges Salan, 30021 Nîmes Cedex 01, France and C2M, Institut C. Gerhardt, UMR-CNRS 5253, 34095 Montpellier Cedex 05, France
A. V. Kavokin
Affiliation:
Dipartimento di Fisica, Universita di Roma II “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
Get access

Abstract

We studied the structural and dielectric properties of new Tetragonal Tungsten Bronze (TTB) ceramics Pb1.85K1.15Li0.15Nb5O15 that was synthesized by solid-state reaction. We pay a special attention to the diffuse phase transition (DPT) that occurs close to 425 °C. Using dielectric measurements in a frequency range of 10 Hz–1 MHz and in the temperature range 30–560 °C, we have shown that the real permittivity close to DPT is well described by Santos-Eiras phenomenological model. Space-charge polarization, relaxation phenomena and free charges conductivity have been analyzed using dielectric spectroscopy impedance and modulus characterization. Cole-Cole plots show a non-Debye (polydispersive) type relaxation. In paraelectric phase the Arrhenius activation energy was determined as Eτ = 0.72 eV. We demonstrated that frequency dependence of ac conductivity at different temperatures obeys the Jonscher's universal law: σac = σdc + A(ω)n.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Giess, E.A., Scott, B.A., Burns, G., O'Kane, D.F., Segmuller, A., J. Am. Ceram. Soc. 52, 276 (1969) CrossRef
Ravez, J., Elouadi, B., Mater. Res. Bull. 19, 1249 (1975) CrossRef
Thoret, J., Ravez, J., Rev. Chim. Minerale T24, 288 (1987)
Zegzouti, A., Elaatmani, M., Sil. Ind. 62, 149 (1997)
M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Clarendon Press, Oxford, 1977), p. 281
Van Uitert, L.G., Singh, S., Levinstein, H.J. et al., Appl. Phys. Lett. 11, 161 (1967) CrossRef
Nakano, J., Yamada, T., J. Appl. Phys. 46, 2361 (1975) CrossRef
Yamauchi, H., Appl. Phys. Lett. 32, 599 (1978) CrossRef
Ravez, J., Simon, A., Hagenmuller, P., Ann. Chim. 1, 251 (1976)
Ph. Sciau, G. Calvarain, J. Ravez, Acta Crystallogr. B 55, 429 (1999) CrossRef
A. Hossain, M.S. thesis, Texas A&M University, 1984, p. 45
Gagou, Y., Frémy, M.-A., Badèche, T., Mezzane, D., Choukri, E., Saint-Grégoire, P., Ferroelectrics 371, 1 (2008) CrossRef
Gagou, Y., Mezzane, D., Aliouane, N., Badèche, T., Elaatmani, M., Pischedda, M.-H., Saint-Grégoire, P., Ferroelectrics 254, 197 (2001) CrossRef
Amira, Y., Gagou, Y., Menny, A., Mezzane, D., Zegzouti, A., Elaatmani, M., El Marssi, M., Solid State Commun. 150, 419 (2010) CrossRef
Oualla, M., Zegzouti, A., Elaatmani, M., Daoud, M., Mezzane, D., Gagou, Y., Saint-Grégoire, P., Ferroelectrics 291, 133 (2003) CrossRef
Taifi, E., Luk'yanchuk, I., El Amraoui, Y., Mezzane, D., Gagou, Y., Ferroelectrics 397, 1 (2010) CrossRef
Arhchoui, H., El Amraoui, Y., Mezzane, D., Luk'yanchuk, I., Eur. Phys. J. Appl. Phys. 48, 10503 (2009) CrossRef
Sambasiva Rao, K., Murali Krishna, P., Swarna La, T.tha, D. Madhava Prasad, Mater. Sci. Eng. B 131, 127 (2006)
El Marssi, M., Farhi, R., Dellis, J.L., Glinchuk, M.D., Seguin, L., Viehland, D., J. Appl. Phys. 83, 5371 (1998) CrossRef
Kim, S.H., Jang, M.S., Yang, Y.S., Kimand, H.J., Ryu, N.Y., Ferroelectrics 196, 261 (1997) CrossRef
Nealon, T.A., Ferroelectrics 76, 377 (1987) CrossRef
Lu Zhigao, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ionics 57, 235 (1992)
Jonscher, A.K., Hill, R.M., Pickup, C., J. Mater. Sci. 20, 4431 (1985)
Sambasiva Rao, K., Murali Krishna, P., Madhava Prasad, D., Joon Hyung Lee, Int. J. Mod. Phys. B 21, 931 (2007) CrossRef
Shrout, T.R., Cross, L.E., Hukin, D.A., Ferroelectr. Lett. 44, 325 (1983) CrossRef
F.G. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, 1962)
Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M., Phys. Rev. B 46, 8003 (1992) CrossRef
Ang, Chen, Jing, Zhi, Yu, Zhi, J. Phys.: Condens. Matter 14, 8901 (2002)
Zhi, Yu, Chen, Ang, Ruyan, Guo, Bhalla, A.S., J. Appl. Phys. 92, 2655 (2002)
Santos, I.A., Garcia, D., Eiras, J.A., J. Appl. Phys. 93, 1701 (2003) CrossRef
Kirilov, V.V., Isupov, V.A., Ferroelectrics 5, 3 (1973) CrossRef
Nealon, T.A., Ferroelectrics 76, 377 (1987) CrossRef
Nobre, M.A.L., Lanfredi, S., Mater. Lett. 50, 322 (2001) CrossRef
Nobre, M.A.L., Lanfredi, S., J. Phys. Chem. Chem. Solids 62, 1999 (2001) CrossRef
Nobre, M.A.L., Lanfredi, S., Mater. Lett. 47, 362 (2001) CrossRef
James, A.R., Balaji, S., Krupanidhi, S.B., Mater. Sci. Eng. B 64, 149 (1999) CrossRef
J.R. MacDonald, W.B. Johnson, Impedance Spectroscopy (John Wiley & Sons, New York, 1987), p. 346
El Moznine, R., Smith, G., Polygalov, E., Suherman, P.M., Broadhead, J., J. Phys. D: Appl. Phys. 36, 330 (2003) CrossRef
Ram, M., Solid State Commun. 149, 1226 (2009) CrossRef
Jonscher, A.K., Nature 267, 673 (1977) CrossRef