Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T23:51:03.521Z Has data issue: false hasContentIssue false

Development principles and production of paired PbS quantum dots

Published online by Cambridge University Press:  06 February 2008

D. Mohanta*
Affiliation:
Nanoscience Laboratory, Department of Physics, Tezpur University, P.O. Napaam, Dist. Sonitpur, Assam-784 028, India Laboratory for Molecular Scale Engineering, 1415 Engineering Dr., Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI 53706, USA
H. Bora
Affiliation:
Nanoscience Laboratory, Department of Physics, Tezpur University, P.O. Napaam, Dist. Sonitpur, Assam-784 028, India
N. Dutta
Affiliation:
Nanoscience Laboratory, Department of Physics, Tezpur University, P.O. Napaam, Dist. Sonitpur, Assam-784 028, India
A. Choudhury
Affiliation:
Nanoscience Laboratory, Department of Physics, Tezpur University, P.O. Napaam, Dist. Sonitpur, Assam-784 028, India Gauhati University, Gopinath Bordoloi Nagar, Guwahati, Assam-781 014, India
Get access

Abstract

We report for the first time, to the best of our knowledge, an inexpensive fabrication procedure for obtaining perfectly coupled PbS quantum dots. Evidence of quantum dot pairing (each, 10–12 nm) was confirmed by transmission electron microscopy, and the stability with aging was checked by dark-current measurements. The method of encapsulating PbS quantum dots in a nontoxic cis-trans polymer is simple, convenient and attractive for reproducible reasons. Such coupled quantum dots are promising to act as qubits which are vital in quantum computers and qubit architecture.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. Meisel, P.V. Kamat, Stud. Surf. Sci. Catalysis 103 (Elsevier: Amsterdam, 1997)
Bedja, I., Kamat, P.V., J. Phys. Chem. 99, 9182 (1995) CrossRef
Hotchandani, S., Kamat, P.V., J. Phys. Chem. 96, 6834 (1992) CrossRef
Parak, W.J., Gerion, D., Pellegrino, T., Zanchet, D., Micheel, C., Williams, S.C., Boudreau, R., Le Gros, M.A., Larabell, C.A., Alivisatos, A.P., Nanotechnology 14, R15 (2003) CrossRef
Lundstrom, T., Schoenfeld, W., Lee, H., Petroff, P.M., Science 286, 2312 (1999) CrossRef
Burkard, G., Loss, D., DiVincenzo, D.P., Phys. Rev. B 59, 2070 (1999) CrossRef
Chan, I.H., Westervelt, R.M., Maranowski, K.D., Gossard, A.C., Appl. Phys. Lett. 80, 1818 (2004) CrossRef
Chan, I.H., Fallahi, P., Westervelt, R.M., Maranowski, K.D., Gossard, A.C., Physica E 17, 584 (2003) CrossRef
Wise, F.W., Acc. Chem. Res. 33, 773 (2000) CrossRef
Wundke, K., Auxier, J., Schulzgen, A., Peyghambarian, N., Borelli, N.F., Appl. Phys. Lett. 75, 3060 (1999) CrossRef
X. Li, D. Steel, D. Gammon, L. Sham, Optics & Photonics News (Optical Society of America), September 2004, p. 38
Lloyd, S., Sci. Amer. 273, 140 (1995) CrossRef
H. Mooij, Science 307, (5713), 1210 (2005)
Warner, J.H., Watt, A.R., Tilley, R.D., Nanotechnology 16, 2381 (2005) CrossRef
L. Kouwenhoven, C. Marcus, Phys. World 35 (1998)
Mohanta, D., Choudhury, A., Materials Lett. 58, 3694 (2004) CrossRef
Mohanta, D., Deka, M., Choudhury, A., J. Appl. Phys. 101, 044302 (2007) CrossRef
Vogel, R., Hoyer, P., Weller, H., J. Phys. Chem. 98, 3183 (1994) CrossRef