Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T18:11:14.914Z Has data issue: false hasContentIssue false

Contribution of long lived metastable states to the PL of InP dots in indirect band-gap barrier layers

Published online by Cambridge University Press:  26 January 2007

R. Seguin
Affiliation:
Groupe d'Étude des Semiconducteurs – CNRS – Université Montpellier II. CC074, 34095 Montpellier Cedex 5, France
T. Guillet
Affiliation:
Groupe d'Étude des Semiconducteurs – CNRS – Université Montpellier II. CC074, 34095 Montpellier Cedex 5, France
T. Taliercio*
Affiliation:
Groupe d'Étude des Semiconducteurs – CNRS – Université Montpellier II. CC074, 34095 Montpellier Cedex 5, France
P. Lefebvre
Affiliation:
Groupe d'Étude des Semiconducteurs – CNRS – Université Montpellier II. CC074, 34095 Montpellier Cedex 5, France
T. Bretagnon
Affiliation:
Groupe d'Étude des Semiconducteurs – CNRS – Université Montpellier II. CC074, 34095 Montpellier Cedex 5, France
X. B. Zhang
Affiliation:
School of Electric and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
J. H. Ryou
Affiliation:
School of Electric and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
R. D. Dupuis
Affiliation:
School of Electric and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
Get access

Abstract

We report continuous wave and time resolved photoluminescence studies of self-assembled InP quantum dots grown by metalorganic chemical vapor deposition. The quantum dots are embedded into indirect band-gap In0.5Al0.5P layers or In0.5Al0.3Ga0.2P layers with a conduction band line-up close to the direct-to-indirect crossover. As revealed by photoluminescence spectra, efficient interdiffusion of species from the barrier layers produces (Al,In)P or (Al,Ga,In)P-dots. This interdiffusion creates potential barriers that are repulsive for electrons of X valleys around the QDs. Both samples show a fast exponential decay component with a time constant between 0.5 and 0.7 ns. In addition, the sample with indirect band gap matrix shows a slow non-exponential time-decay, which is still visible after more than 100 µs. The fast component is attributed to direct recombination of electron-hole pairs in the dots whilst the slow component, which follows a power law t −0.75 results from recombination of holes in the dots and electrons in metastable states around the dots.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, Y., Sakaki, H., Appl. Phys. Lett. 40, 939 (1982) CrossRef
Asada, M., Miyamoto, Q., Suematsu, Y., IEEE J. Quantum Electron. 22, 1915 (1986) CrossRef
Persson, J., Holm, M., Pryor, C., Hessman, D., Seifert, W., Samuelson, L., Pistol, M.-E., Phys. Rev. B 67, 035320 (2003), other works from Lund Univ. CrossRef
Hatami, F., Masselink, W.T., Schrottke, L., Tomm, J.W., Talalaev, V., Kristukat, C., Goñ, A.R., Phys. Rev. B 67, 085306-1 (2003) CrossRef
Ryou, J.H., Dupuis, R.D., Walter, G., Kellogg, D.A., Holonyak, N., Mathes, D.T., Hull, R., Reddy, C.V., Narayanamurti, V., Appl. Phys. Lett. 78, 4091 (2001) CrossRef
Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R., Appl. Phys. Rev. 89, 5815 (2001) CrossRef
Zhang, X.B., Heller, R.D., Noh, M.S., Dupuis, R.D., Walter, G., Holonyak, N., Appl. Phys. Lett. 83, 1349 (2003) CrossRef
Ryou, J.H., Dupuis, R.D., Walter, G., Holonyak, N., Mathes, D.T., Hull, R., Reddy, C.V., Narayanamurti, V., J. Appl. Phys. 91, 5313 (2002) CrossRef
Leyronas, X., Combescot, M., Solid State Commun. 119, 631 (2001) CrossRef
Zwiller, V. et al., Phys. Rev. B 59, 5021 (1999) CrossRef
Bellessa, J., Voliotis, M., Grousson, R., Wang, X.L., Ogura, M., Matsuhata, H., Phys. Rev. B 58, 9933 (1998) CrossRef
Rosenblatt, G.H., Rowe, M.W., Williams Jr, G.P.., R.T. Williams, Y. Chen, Phys. Rev. B 39, 10309 (1989) CrossRef
Dawson, P., Ma, Z., Pierz, K., Göbel, E.O., Appl. Phys. Lett. 81, 2349 (2002) CrossRef
M.E.J. Newman, Condensed Matter, abstract, e-print arXiv:cond-mat/0412004
Thomas, D.G., Hopfield, J.J., Augustyniak, W.M., Phys. Rev. A 140, A202 (1965) CrossRef
Higashi, G.S., Kastner, M., Phys. Rev. B 24, 2295 (1981) CrossRef
H. Schneider, B. Dischler, C. Wild, P. Koidl, Phys. Rev. B 51, 16 677 (1995)
Reshchikov, M.A., Morkoç, H., Park, S.S., Lee, K.Y., Appl. Phys. Lett. 78, 2882 (2001) CrossRef
Avouris, P., Morgan, T.N., J. Chem. Phys. 74, 4347 (1981) CrossRef
Shimakawa, K., Phys. Rev. B 31, 4012 (1985) CrossRef
Wilson, B.A., Hu, P., Jedju, T.M., Harbison, J.P., Phys. Rev. B 28, 5901 (1983) CrossRef
Zhang, X.B., Ryou, J.H., Dupuis, R.D., Walter, G., Holonyak, N., J. Appl. Phys. 98, 063501 (2005) CrossRef