Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T04:43:13.314Z Has data issue: false hasContentIssue false

A conduction model for polysilicon thin films over a wide doping level range

Published online by Cambridge University Press:  23 December 2011

B. Yan
Affiliation:
School of Electronic and Information Engineering, State Key Lab of Luminescence Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
B. Li*
Affiliation:
School of Electronic and Information Engineering, State Key Lab of Luminescence Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
R. Yao
Affiliation:
School of Electronic and Information Engineering, State Key Lab of Luminescence Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
W. Wu
Affiliation:
College of Material Science and Engineering, State Key Lab of Luminescence Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
*
Get access

Abstract

In this paper, based on diffusion and thermionic-field emission conduction mechanisms in crystalline-insulator-crystalline system, a comprehensive model of current conduction for polycrystalline silicon is developed, considering the doping effect and the temperature effect on carrier mobility. The simulation results show a good agreement with the experimental data without unphysical fitting parameter. It is demonstrated that the effective diffusion velocity limits the carrier movement at light doping level, while the thermal velocity and the tunneling effect dominate the carrier conduction at heavy doping concentration. The developed model can interpret the conduction characteristics of polysilicon thin films over a wide range of doping levels with temperature.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, W.J., Yao, R.H., Zheng, X.R., Solid-State Electron. 53, 607 (2009)CrossRef
Chow, T., Wong, M., IEEE Trans. Electron Devices 56, 1493 (2009)CrossRef
Meng, Z., Wong, M., IEEE Trans. Electron Devices 47, 404 (2000)CrossRef
Seto, J.Y.W., J. Appl. Phys. 46, 5247 (1975)CrossRef
Baccarani, G., Ricco, B., Spadini, G., J. Appl. Phys. 49, 5565 (1978)CrossRef
Lu, N.C.C., Gerzberg, L., Lu, C.Y., Meindl, J.D., IEEE Trans. Electron Devices 30, 137 (1983)CrossRef
Lu, N.C.C., Gerzberg, L., Lu, C.Y., Meindl, J.D., IEEE Trans. Electron Devices 28, 818 (1981)CrossRef
Mandurah, M.M., Saraswat, K.C., Kamins, T.I., IEEE Trans. Electron Devices 28, 1163 (1981)CrossRef
Mandurah, M.M., Saraswat, K.C., Kamins, T.I., IEEE Trans. Electron Devices 28, 1171 (1981)CrossRef
Sharma, M.K., Joshi, D.P., J. Appl. Phys. 106, 024504 (2009)CrossRef
Kim, D.M., Khondker, A.N., Ahmed, S.S., IEEE Trans. Electron Devices 31, 493 (1984)CrossRef
Kim, D.M., Khondker, A.N., Ahmed, S.S., IEEE Trans. Electron Devices 31, 480 (1984)CrossRef
Singh, S.N., Kishore, R., Singh, P.K., J. Appl. Phys. 57, 2793 (1985)CrossRef
Evans, P.V., Nelson, S.F., J. Appl. Phys. 69, 3605 (1991)CrossRef
Sze, S.M., Physical of Semiconductor Devices (Wiley, New York, 2007)Google Scholar
Sharma, M.K., Joshi, D.P., J. Appl. Phys. 102, 033704 (2007)CrossRef
Upreti, N.K., Singh, S., Bull. Mater. Sci. 14, 1331 (1991)CrossRef
Pearson, G.L., Bardeen, J., Phys. Rev. 75, 865 (1949)CrossRef
Joshi, D.P., Srivastava, R.S., IEEE Trans. Electron Devices 37, 920 (1984)CrossRef
Card, H.C., Rhoderick, E.H., J. Phys. D: Appl. Phys. 4, 1589 (1971)CrossRef
Crowell, C.R., Sze, S.M., Solid-State Electron. 9, 1035 (1966)CrossRef
Harrison, W.A., Phys. Rev. 123, 85 (1961)CrossRef
Gray, P.V., Phys. Rev. 140, 179 (1961)CrossRef