Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T04:37:49.706Z Has data issue: false hasContentIssue false

Comprehensive study of an optical fiber plasmonic microsensor in a microfluidic device

Published online by Cambridge University Press:  28 September 2011

T. Makiabadi
Affiliation:
Institut des Matériaux Jean-Rouxel (IMN)CNRS, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
V. Le Nader
Affiliation:
Institut des Matériaux Jean-Rouxel (IMN)CNRS, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
M. Kanso
Affiliation:
Institut des Matériaux Jean-Rouxel (IMN)CNRS, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
G. Louarn*
Affiliation:
Institut des Matériaux Jean-Rouxel (IMN)CNRS, Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
*
Get access

Abstract

In the last decade, surface plasmon resonance (SPR) has become a very sensitive technique for real-time detection of chemical and biochemical targets in many application areas. Considering the important needs for analyzing biomolecular reactions through automated and miniaturized components, optical fiber sensors based on the SPR effects are presently considered as an alternative in the development of microsensors. In the present work, a microfluidic system associated with an optical fiber SPR sensor is developed and evaluated to monitor in real-time the sensitivity of optical fiber sensor to each kinetic reaction occurring at the surface. From the kinetic parameters obtained by our experimental measurements and then implemented in the numerical model, modeling allows us to demonstrate the potential of SPR optical fiber sensors for biological analysis.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Berthier, P. Silberzan, Microfluidics for biotechnologie (Artech House, Boston, London, 2006), p. 177
Minc, N., Viovy, J.L., C.R. Physique 5, 565 (2004) CrossRef
Huang, S.C., Lee, G.B., Chien, F.C., Chen, S.J., Chen, W.J., Yang, M.C., J. Micromech. Microeng. 16, 1251 (2006) CrossRef
Wang, Y., Vaidaya, B., Farquar, H.D., Stryjewski, W., Hammer, R.P., McCarley, R.L., Soper, S.A., Anal. Chem. 73, 1130 (2003) CrossRef
Balaa, K., Kanso, M., Cuenot, S., Minea, T., Louarn, G., Sens. Actuat. B Chem. 126, 198 (2007) CrossRef
Kanso, M., Cuenot, S., Louarn, G., Plasmonics 3, 49 (2008) CrossRef
Homola, J., Anal. Bioanal. Chem. 377, 528 (2003) CrossRef
Gupta, B.D., Sharma, A.K., Sens. Actuat. B 107, 40 (2007) CrossRef
Myszka, D.G., Norton, T.A., Trends Biochem. Sci. 23, 149 (1998) CrossRef
Karlsson, R., Katsamba, P.S., Nordin, H., Pol, E., Myszka, D.G., Anal. Biochem. 349, 136 (2006) CrossRef
Gervais, T., Tensen, K.F., Chem. Eng. Sci. 61, 1102 (2006) CrossRef
B. William, J. Zimmerman, Process Modelling and simulation with finite element methods: Series on stability (World Scientific, Singapore, 2004), p. 182
Tsoi, P.Y., Yang, M., Biochem. J. 361, 317 (2002) CrossRef
Glasser, R.W., Anal. Biochem. 213, 152 (1993) CrossRef
Christensen, L.L., Anal. Biochem. 249, 153 (1997) CrossRef
Karlsson, R., Falt, A., J. Immunol. Meth. 200, 121 (1997) CrossRef
Zimmermann, B., Chiorinis, J.A., Ma, Y., Kotin, R.M., J. Biol. Chem. 274, 5370 (1999) CrossRef