Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:44:35.478Z Has data issue: false hasContentIssue false

Compensation of loss to approach –1 effective index by gainin metal-dielectric stacks

Published online by Cambridge University Press:  25 July 2008

J. Zhang
Affiliation:
Institut Fresnel, CNRS, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, Service 161, 13397 Marseille Cedex 20, France State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, P.R. China
H. Jiang
Affiliation:
Institut Fresnel, CNRS, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, Service 161, 13397 Marseille Cedex 20, France Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P.R. China
B. Gralak
Affiliation:
Institut Fresnel, CNRS, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, Service 161, 13397 Marseille Cedex 20, France
S. Enoch*
Affiliation:
Institut Fresnel, CNRS, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, Service 161, 13397 Marseille Cedex 20, France
G. Tayeb
Affiliation:
Institut Fresnel, CNRS, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, Service 161, 13397 Marseille Cedex 20, France
M. Lequime
Affiliation:
Institut Fresnel, CNRS, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, Service 161, 13397 Marseille Cedex 20, France
Get access

Abstract

We propose a theoretical study of optimization of metal-dielectric multilayer in order to approach -1 effective refractive index for transverse magnetic waves and a wavelength in the visible. The absorption losses of metal appear to be a crucial factor that affects the effective properties of the multilayer. Taking advantage of the dispersion relation of Bloch modes, we show that the losses not only decrease the transmission of the stack, but also change the negatively refracted angle. Then, we propose that using a gain-providing semiconductor (GaN) may allow compensating for the losses in metal layers. In theory, the performances of the structure can be improved greatly when gain is involved. When considering finite thickness structures, and with appropriate thickness for the terminating layers, it is possible to obtain a high transmission of the structure. A near -1 effective index metal-dielectric stack with high transmission may pave the way to the realization of negative quasi-isotropic refraction in the visible or ultraviolet wavelength range.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968) CrossRef
J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)
Shelby, R.A., Smith, D., Schultz, S., Science 292, 77 (2001) CrossRef
Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., Soukoulis, C.M., Science 306, 1351 (2004) CrossRef
Gralak, B., Enoch, S., Tayeb, G., J. Opt. Soc. Am. A 17, 1012 (2000) CrossRef
Notomi, M., Phys. Rev. B 62, 10696 (2000) CrossRef
Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M., Nature (London) 423, 604 (2003) CrossRef
Melville, D.O., Blaikie, R.J., Opt. Expr. 13, 2127 (2005) CrossRef
Fang, N., Lee, H., Sun, C., Zhang, X., Science 308, 534 (2005) CrossRef
Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G., Hillenbrand, R., Science 313, 1595 (2006) CrossRef
Ramakrishna, S.A., Pendry, J.B., Wiltshire, M.C.K., Stewart, W.J., J. Mod. Opt. 50, 1419 (2003) CrossRef
Belov, P.A., Hao, Y., Phys. Rev. B 73, 113110 (2006) CrossRef
Shin, H., Fan, S., Appl. Phys. Lett. 89, 151102 (2006) CrossRef
Scalora, M., D'Aguanno, G., Mattiucci, N., Bloemer, M.J., de Ceglia, D., Centini, M., Mandatori, A., Sibilia, C., Akozbek, N., Cappeddu, M.G., Fowler, M., Haus, J.W., Opt. Expr. 15, 508 (2007) CrossRef
Pierre, R., Gralak, B., J. Mod. Opt. 55, 1759 (2008), http://www.informaworld.com/smpp/content CrossRef
Zhang, J.L., Jiang, H.T., Gralak, B., Enoch, S., Tayeb, G., Lequime, M., Opt. Expr. 15, 7720 (2007) CrossRef
Yeh, P., Yariv, A., Hong, C.S., J. Opt. Soc. Am. 67, 423 (1977) CrossRef
Kong, J.A., Wu, B.L., Zhang, Y., Microwave Opt. Technol. Lett. 33, 136 (2002) CrossRef
Johnson, P.B., Christy, R.W., Phys. Rev. B 6, 4370 (1972) CrossRef
Kuzmiak, V., Maradudin, A.A., Phys. Rev. B 55, 7427 (1996) CrossRef
Ramakrishna, S.A., Pendry, J.B., Phys. Rev. B 67, 201101 (2003) CrossRef
Klar, T.A., Kildishev, A.V., Drachev, V.P., Shalaev, V.M., IEEE J. Selec. Top. Quant. Electron. 12, 1106 (2006) CrossRef
Strite, S., Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992) CrossRef