Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:07:21.691Z Has data issue: false hasContentIssue false

A comparative study of the behaviour of silver, copper and nickel submitted to a constant high power flux density

Published online by Cambridge University Press:  19 May 2005

M. Abbaoui
Affiliation:
Laboratoire Arc Electrique et Plasmas Thermiques, CNRS UMR 6069, Université Blaise Pascal, 63177 Aubière, France
A. Lefort
Affiliation:
Laboratoire Arc Electrique et Plasmas Thermiques, CNRS UMR 6069, Université Blaise Pascal, 63177 Aubière, France
S. Clain
Affiliation:
Laboratoire de Mathématiques Appliquées, CNRS UMR 6620, Université Blaise Pascal, 63177 Aubière, France
J. Rossignol
Affiliation:
Laboratoire de Recherches sur la Réactivité des Solides, CNR UMR 5613, Université de Bourgogne, 21078 Dijon, France
Get access

Abstract

In this paper, we present a numerical simulation of three metal cathode (silver, copper and nickel) submitted to a constant flux power flux density ranging between $1\times 10^{11}$ and $5\times 10^{12}~\rm W\,m^{-2}$ . The goal is to compare the interface evolution (vaporization and liquefaction rate, appearance time of liquid and vapour, energetic repartition) to predict the behaviour of the cathodes during an electric arc.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

I. Beilis, Handbook of Vacuum Arc Science and Technology, edited by R.L. Boxman, P.J. Martin, D.M. Sanders (Noyes, New Jersey, 1995), pp. 209–282
A. Anders, S. Anders, B. Jüttner, W. Bötticher, H. Lück, G. Schröder, XV Int. Symp. on Discharges and Electrical Insulation in Vacuum, Darmstadt, 1992
Djakov, B.E., Holmes, R., J. Phys. D Appl. Phys. 7, 569 (1974) CrossRef
Jüttner, B., J. Phys. D Appl. Phys. 28, 516 (1995) CrossRef
H.W. Turner, C. Turner, Material for heavy duty electrical contacts, Part. II, E.R.A., Rep. No. 5239 (1967)
Lee, T.H., Greenwood, A., J. Appl. Phys. 32, 916 (1961) CrossRef
Lee, T.H., J. Appl. Phys. 31, 924 (1960) CrossRef
Fink, H.P., Wiss. Veröff. Siemens-Werke 17, 45 (1938) CrossRef
Reece, M.P., Proc. Int. Elec. Eng. 110, 793 (1963) CrossRef
Kesaev, I.G., Sov. Phys.-Tech. Phys. 9, 1146 (1965)
Grakov, V.E., Sov. Phys.-Tech. Phys. 12, 286 (1967)
D.R. Lide, Handbook of Chemistry and Physics (CRC Press LLC, USA, 2001), Vol. 10, pp. 175–176
Rossignol, J., Abbaoui, M., Clain, S., J. Phys. D Appl. Phys. 33, 2079 (2000) CrossRef
E. Hantzsche, Handbook of Vacuum Arc Science and Technology, edited by R.L. Boxman, P.J. Martin, D.M. Sanders (Noyes, New Jersey, 1995), pp. 151–208
I. Barin, Thermochemical Data of Pure Substances (VCH, Germany, 1993)
M.W. Chase (Ed.), JANAF Thermochemical tables, J. Phys. Chem. Ref. Data, 4th edn. (USA, 1998)
F.C. Verna, Thermal Properties of Metals (ASM International, USA, 2002)
C.J. Smithells, E.A. Brandes, Metals Reference Book, 5th edn. (Woburn, MA: Butterworths, 1976)
Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemeus, Thermophysical Properties of Matter and Alloys, IFI/Plenum, Perdue Research Foundation, 1970
V.I. Rakhovskii, IEEE T. Plasma Sci. PS-4, 81 (1976)
Hantzsche, E., Plasma Phys. 25, 459 (1985)
E. Hantzsche, B. Jüttner, IEEE T. Plasma Sci. PS-13, 230 (1985)
J.E. Daalder, IEEE T. Power Appl. Syst. PAS-93, 1747 (1974)