Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T04:22:03.211Z Has data issue: false hasContentIssue false

Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate insulator

Published online by Cambridge University Press:  23 December 2011

C.H. Kim*
Affiliation:
LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
D. Tondelier
Affiliation:
LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
B. Geffroy
Affiliation:
LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France CEA Saclay, DSM/IRAMIS/SPCSI/LCSI, 91191 Gif-sur-Yvette, France
Y. Bonnassieux
Affiliation:
LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
G. Horowitz
Affiliation:
LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
*
Get access

Abstract

The organic thin-film transistors (OTFTs) incorporating pentacene/SU-8 interface were fabricated and characterized. SU-8, a reliable epoxy-based photoresist, is tested as a potential highly-stable polymeric gate dielectric for OTFTs. The fabricated devices showed promising electrical performance with on-off ratio up to 107 and field-effect mobility up to 0.56 cm2/V s. Several device characteristics are further analyzed. There existed a leakage current path due to the uncontrolled pentacene coverage and we revealed that precise alignment of the evaporation mask of pentacene is critical for eliminating this problem. Pentacene grain formation largely depended on the growth condition on the SU-8 surface and small-grain films offered outstanding performance possibly owing to enhanced inter-domain connections. Natural degradation of the OTFTs is also discussed in terms of environmental stability and the pentacene/SU-8 transistor operated with noticeable air stability under ambient conditions.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braga, D., Horowitz, G., Adv. Mater. 21, 1473 (2009)CrossRef
Horowitz, G., Adv. Funct. Mater. 13, 53 (2003)CrossRef
Facchetti, A., Yoon, M.H., Marks, T.J., Adv. Mater. 17, 1705 (2005)CrossRef
del Campo, A., Greiner, C., J. Micromech. Microeng. 17, R81 (2007)Google Scholar
Melai, J., Salm, C., Smits, S., Visschers, J., Schmitz, J., J. Micromech. Microeng. 19, 065012 (2009)CrossRef
Pesavento, P.V., Puntambekar, K.P., Frisbie, C.D., McKeen, J.C., Ruden, P.P., J. Appl. Phys. 99, 094504 (2006)CrossRef
Ruiz, R., Choudhary, D., Nickel, B., Toccoli, T., Chang, K.C., Mayer, A.C., Clancy, P., Blakely, J.M., Headrick, R.L., Iannotta, S., Malliaras, G.G., Chem. Mater. 16, 4497 (2004)CrossRef
Yanagisawa, H., Tamaki, T., Nakamura, M., Kudo, K., Thin Solid Films 464–465, 398 (2004)CrossRef
Yang, S., Shin, K., Park, C., Adv. Funct. Mater. 15, 1806 (2005)CrossRef
Verlaak, S., Arkhipov, V., Heremans, P., Appl. Phys. Lett. 82, 745 (2003)CrossRef
Kim, C.H., Bonnassieux, Y., Horowitz, G., IEEE Electron Device Lett. 32, 1302 (2011)CrossRef
Richards, T., Sirringhaus, H., Appl. Phys. Lett. 92, 023512 (2008)CrossRef
Han, S.H., Kim, J.H., Jang, J., Cho, S.M., Oh, M.H., Lee, S.H., Choo, D.J., Appl. Phys. Lett. 88, 073519 (2006)CrossRef
Fu, Y., Tsai, F.Y., Org. Electr. 12, 179 (2011)CrossRef
Jung, H., Lim, T., Choi, Y., Yi, M., Won, J., Pyo, S., Appl. Phys. Lett. 92, 163504 (2008)CrossRef
Cipolloni, S., Mariucci, L., Valletta, A., Simeone, D., Angelis, F.D., Fortunato, G., Thin Solid Films 515, 7546 (2007)CrossRef
Kalb, W.L., Batlogg, B., Phys. Rev. B 81, 035327 (2010)CrossRef
McDowell, M., Hill, I.G., McDermott, J.E., Bernasek, S.L., Schwartz, J., Appl. Phys. Lett. 88, 073505 (2006)CrossRef