Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T18:10:13.888Z Has data issue: false hasContentIssue false

Capillary microplasmas for ozone generation

Published online by Cambridge University Press:  28 April 2009

K. Hensel*
Affiliation:
Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia
Z. Machala
Affiliation:
Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia
P. Tardiveau
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université Paris-Sud, Bâtiment 210, 91400 Orsay, France
Get access

Abstract

Microplasmas inside confined cavities, pores and capillaries of dielectric materials present a great potential for various environmental applications. The paper briefly introduces the physical properties of the AC microplasmas generated by the discharges inside porous ceramics foams and focuses on their chemical effects in various mixtures of nitrogen and oxygen. Ozone formation as an example tool to evaluate the chemical potential of the microplasmas was investigated as a function of discharge power, gas mixture composition and total gas flow rate.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Non-Equilibrium Air Plasmas at Atmospheric Pressure, edited by K.H. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker (Institute of Physics Publishing, Bristol, 2005)
Becker, K.H., Schoenbach, K.H., Eden, J.G., J. Phys. D: Appl. Phys. 39, R55 (2006) CrossRef
Park, H.I., Lee, T.I., Park, K.W., Baika, H.K., Appl. Phys. Lett. 82, 3191 (2003) CrossRef
Kurunczi, P., Abramzon, N., Figus, M., Becker, K., Acta Phys. Slovaca 54, 115 (2004)
Koutsospyros, A.D., Yin, S.M., Christodoulatos, C., Becker, K., IEEE Trans. Plasma Sci. 33, 42 (2005) CrossRef
Kraus, M., Eliasson, B., Kogelschatz, U., Wokaun, A., Phys. Chem. 3, 294 (2001)
Lee, M.S., Koo, I.G., Kim, J.H., Lee, W.M., Int. J. Hydrogen Energy 34, 40 (2009) CrossRef
Hensel, K., Sato, S., Mizuno, A., IEEE Trans. Plasma Sci. 36, 1282 (2008) CrossRef
Blin-Simiand, N., Tardiveau, P., Risacher, A., Jorand, F., Pasquiers, S., Plasma Process. Polym. 2, 256 (2005) CrossRef
Ayrault, C., Barrault, J., Blin-Simiand, N., Jorand, F., Pasquiers, S., Rousseau, A., Tatibout, J.M., Catal. Today 89, 75 (2004) CrossRef
Kogelschatz, U., Chem. Plasma Process. 23, 1 (2003) CrossRef
Šimor, M., Ráheľ, J., Vojtek, P., Černák, M., Appl. Phys. Lett. 81, 2716 (2002) CrossRef
Černák, M., Ráheľ, J., Kováčik, D., Šimor, M., Brablec, A., Slavíček, P., Contrib. Plasma Phys. 44, 492 (2004) CrossRef
Hensel, K., Tardiveau, P., IEEE Trans. Plasma Sci. 36, 980 (2008) CrossRef
Hensel, K., Martišovitš, V., Machala, Z., Janda, M., Leštinský, M., Tardiveau, P., Mizuno, A., Plasma Process. Polym. 4, 682 (2007) CrossRef
Hensel, K., Katsura, S., Mizuno, A., IEEE Trans. Plasma Sci. 33, 574 (2005) CrossRef
Hensel, K., Matsui, Y., Katsura, S., Mizuno, A., Czech. J. Phys. 54, C683 (2004) CrossRef