Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:04:35.529Z Has data issue: false hasContentIssue false

Boson induced nuclear fusion in crystalline solids

Published online by Cambridge University Press:  23 April 2010

P. Kálmán
Affiliation:
Budapest University of Technology and Economics, Institute of Physics, Budafoki út 8. F. I. I. 10., 1521 Budapest, Hungary
T. Keszthelyi*
Affiliation:
Budapest University of Technology and Economics, Institute of Physics, Budafoki út 8. F. I. I. 10., 1521 Budapest, Hungary
D. Kis
Affiliation:
Budapest University of Technology and Economics, Institute of Nuclear Technics, Department of Nuclear Energy, Műegyetem rkpt. 9., 1111 Budapest, Hungary
Get access

Abstract

In a calculation of demonstrative type collective, laser-like behavior of low energy nuclear fusion reaction of deuterons in crystalline environment is investigated. It is found that the reported extra 4He production can be appropriately described with a model well known in quantum electronics in which the quantized boson (4He) field interacts with an ensemble of two-level systems in a crystal resonator. The estimated life times of the two levels indicate that population inversion may be achieved. Thresholds of the deuteron number of the sample and of the electric current density of the pumping electrolysis are estimated in the calculation by analyzing the gain parameter and some other characteristics of the process. An explanation for the experimentally observed threshold behavior of the electric current density is given. A loss of a special type, that is the degenerate parametric amplifier mechanism, is suggested to be responsible for the difference between the expected and observed energies of the outgoing charged particles.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fleishmann, M., Pons, S., J. Electroanal. Chem. 261, 301 (1989) CrossRef
Storms, E., Fusion Technol. 20, 433 (1991)
Nagel, D.J., Radiat. Phys. Chem. 51, 653 (1998) CrossRef
P.L. Hagelstein, M.C.H. McKubre, D.J. Nagel, T.A. Chubb, R.J. Hekman, http://www.newenergytimes.com/v2/government/DOE2004/2004-DOE-Summary-Paper.pdf
Hubler, G.K., Surf. Coat. Technol. 201, 8568 (2007)
Szpak, S., Mosier-Boss, P.A., Young, C., Gordon, F.E., J. Electroanal. Chem. 580, 284 (2005)
Chechin, V.A., Tsarev, V.A., Rabinowitz, M., Kim, Y.E., Int. J. Theor. Phys. 33, 617 (1994) CrossRef
Nagel, D.J., Infinite Energy 88, 21 (2009)
Kalman, P., Keszthelyi, T., Kis, D., Eur. Phys. J. Appl. Phys. 44, 297 (2008) CrossRef
Kálmán, P., Keszthelyi, T., Nucl. Instrum. Meth. B 240, 781 (2005) CrossRef
Kálmán, P., Keszthelyi, T., Phys. Rev. C 69, 031606(R) (2004) CrossRef
J.M. Ziman, Principles of the Theory of Solids (University Press, Cambridge, 1964)
P. Marmier, E. Sheldon, Physics of Nuclei and Particles (Academic, New York, 1989), Vol. 1, pp. 315-317
Schwinger, J., Phys, Z.. D: At., Mol. Clusters 15, 221 (1990) CrossRef
J.H. Hamilton, Internal Conversion Processes (Academic, New York, 1966)
Kálmán, P., Keszthelyi, T., Phys. Rev. C 79, 031602(R) (2009) CrossRef
McKubre, M.C.H. et al., J. Electroanal. Chem. 368, 55 (1994) CrossRef
Hagelstein, P.L., J. Fusion Energy 9, 451 (1990) CrossRef
P.L. Hagelstein, I. Chandhary, Int. Conf. Cold Fusion 15 (ICCF15), Roma, , 2009 (Session2, S2-01), http://www.iccf15.frascati.ena.it/program/programme.html, PowerPoint slide of the presentation is available at http://www.iccf15.frascati.ena.it/ICCF15-PRESENTATIONS
Borrmann, G., Z. Phys. 127, 297 (1950)
H.M. Nussenzveig, Introduction to Quantum Optics (Gordon and Beach, London, 1973)
C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York (english version), Hermann, Paris, 1977), Vol. 1
Ichimaru, S., Rev. Mod. Phys. 65, 255 (1993) CrossRef
E. Wicke, H. Brodowsky, H. Züchner, in Hydrogen in Metals, edited by G. Alefeld, J. Völkl (Springer, Heidelberg, 1978), Vol. 2, Chap. 3, p. 88
P.W. Milonni, J.H. Eberly, Lasers (John Wiley, New York, 1988)
Fujimoto, J.G., Liu, J.M., Ippen, E.P., Bloembergen, N., Phys. Rev. Lett. 53, 1837 (1984) CrossRef
W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Oxford University Press, London, 1954), p. 242
Koch, H.W., Motz, J.W., Rev. Mod. Phys. 31, 920 (1959) CrossRef
Andreen, C.J., Hines, R.L., Phys. Rev. 151, 341 (1966) CrossRef
C. Kittel, Introduction to Solid State Physics, 2nd edn. (Wiley, New York, 1961)
E. Wicke, H. Bodowsky, H. Zücker, in Hydrogen in Metals, edited by G. Alefeld, J. Völkl (Springer, Heidelberg, 1978), Vol. 2, p. 145
D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 1994), pp. 73-75
P. Meystre, M. Sargent III, Elements of Quantum Optics, 2nd edn. (Springer, Berlin, 1991)