Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:34:13.005Z Has data issue: false hasContentIssue false

A binary classification methodology applicable to defects detection.Boosting algorithms

Published online by Cambridge University Press:  15 October 2000

I. Marie-Joseph*
Affiliation:
Laboratoire de Traitement du Signal et de Modélisation des Machines, Institut d'Études Supérieures de la Guyane, avenue d'Estrée, BP 792, 97337 Cayenne Cedex, France
A. Oukaour
Affiliation:
Laboratoire de Traitement du Signal et de Modélisation des Machines, Institut d'Études Supérieures de la Guyane, avenue d'Estrée, BP 792, 97337 Cayenne Cedex, France
H. Clergeot
Affiliation:
Laboratoire de Traitement du Signal et de Modélisation des Machines, Institut d'Études Supérieures de la Guyane, avenue d'Estrée, BP 792, 97337 Cayenne Cedex, France
A. Primerose
Affiliation:
Laboratoire de Traitement du Signal et de Modélisation des Machines, Institut d'Études Supérieures de la Guyane, avenue d'Estrée, BP 792, 97337 Cayenne Cedex, France
Get access

Abstract

This article presents a binary classification method which isused in defects detection. It's presented as recursives “boosting”algorithms which allow us to obtain a precise discriminating function bycombination of hypothesis and rules with moderate accuracy. This approachpermits the study of random phenomena governed by nonparametric laws and adirect decision for the observations classification and the determination offrontiers in an observation space. The various analyses which will bedeveloped are illustrated by simulations making it possible to evaluate thepossibilities of the method.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Alachkar, Diagnostic vibro-acoustique des défauts de fabrication des machines électriques, thèse de Doctorat de l'Université de Paris-Sud, Centre d'Orsay, 1995.
B. Dubuisson, Diagnostic et reconnaissance des formes (Éditions Hermès, 1990).
Y. Freund, R.E. Schapire, Experiments with a New Boosting Algorithm, in Machine Learning: Proceedings of the Thirteenth International Conference, 1996, pp. 148-156.
R.E. Schapire, Theorical views of boosting, in Computational Learning Theory: Fourth European Conference, EuroCOLT'99, 1999.
R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, in Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998.
G. Zwingelstein, Diagnostic des défaillances - Théorie et pratique pour les systèmes industriels (Éditions Hermès, 1995).