Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T02:32:59.143Z Has data issue: false hasContentIssue false

Avalanche characteristics of single heterojunction avalanche photodiodes

Published online by Cambridge University Press:  17 February 2009

L. C. Low
Affiliation:
Faculty of Engineering and Technology, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka, Malaysia
A. H. You*
Affiliation:
Faculty of Engineering and Technology, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka, Malaysia
L. L. Y. Andy
Affiliation:
Faculty of Engineering and Technology, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka, Malaysia
S. L. Tan
Affiliation:
Faculty of Engineering and Technology, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka, Malaysia
Get access

Abstract

A simple Monte Carlo (MC) model is proposed to study the avalanche characteristics of heterojunction avalanche photodiode (HAPD). This model is capable to simulate the avalanche multiplication and excess noise factor in HAPDs by including the dead-space effect, hole to electron ionization ratio and heterointerface probability. The dead-space effect showed a vital role in reducing noise in single junction HAPDs based on the statistical determination in our model. It is shown that the dead-space effect reduces the avalanche noise in heterojunction device due to the localized ionization events. We found that the dead-space effect and the number of hole feedback impact ionizations are still the dominant effects to improve the excess noise factor especially in the injection layer of the device. In addition, the probability of electron and hole to cross the heterointerface will eliminate the secondary impact ionizations in the device.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McIntyre, R.J., IEEE Trans. Electron Dev. 13, 64 (1966)
Chin, R., Holonyak, N., Stillman, G.E., Tang, J.Y., Hess, K., Electron. Lett. 16, 467 (1980) CrossRef
Capasson, F., Tsang, W.T., Hutchinson, A.L., Williams, G.F., Appl. Phys. Lett. 40, 38 (1982) CrossRef
Kagawa, T., Iwamura, H., Mikami, O., Appl. Phys. Lett. 54, 33 (1989) CrossRef
Chia, C.K., Ng, B.K., David, J.P.R., Rees, G.J., Tozer, R.C., Hopkinson, M., Airey, R.J., Robson, P.N., J. Appl. Phys. 94, 2631 (2003) CrossRef
Wang, S., Hurst, J.B., Ma, F., Sidhu, R., Sun, X., Zheng, X.G., Holmes, A.L., Huntington, A., Coldren, L.A., Campbell, J.C., IEEE Photon. Technol. Lett. 14, 1722 (2002) CrossRef
Wang, S., Ma, F., Li, X., Sidhu, R., Zheng, X.G., Sun, X., Holmes, A.L., Campbell, J.C., IEEE J. Quant. Electron. 39, 375 (2003) CrossRef
Kwon, O.H., Hayat, M.M, Wang, S., Campbell, J.C., Holmes, A., Pan, Y., Saleh, B.E.A., Teich, M.C., IEEE J. Quant. Electron. 39, 1287 (2003) CrossRef
Groves, C., David, J.P.R., Rees, G.J., Ong, D.S., J. Appl. Phys. 95, 6245 (2004) CrossRef
Herbert, D.C., Williams, C.J., Jaros, M., Electron. Lett. 32, 1616 (1996) CrossRef
Okuto, Y., Crowell, C.R., Phys. Rev. B 10, 4284 (1974) CrossRef
A.H. You, L.C. Low, P.L. Cheang, in IEEE Int. Conf. Semicond. Electron., Kuala Lumpur, Malaysia (2006), p. 324
Kane, E.O., J. Appl. Phys. 32, 83 (1961) CrossRef
Osaka, F., Mikawa, T., J. Quant. Electron. 22, 471 (1986) CrossRef
Yuan, P., Anselm, K.A., Hu, C., Nie, H., Lenox, C., Holmes, A.L., Streetman, B.G., Campbell, J.C., McIntyre, R.J., IEEE Trans. Electron Dev. 46, 1632 (1999) CrossRef
You, A.H., Ong, D.S., Jpn J. Appl. Phys. 43, 7399 (2004) CrossRef