Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T18:29:29.551Z Has data issue: false hasContentIssue false

Atomic and electronic structure of gadolinium oxide

Published online by Cambridge University Press:  27 January 2014

Timofey Viktorovich Perevalov*
Affiliation:
A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva ave., 630090 Novosibirsk, Russian Federation
Andrey Evgenievich Dolbak
Affiliation:
A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva ave., 630090 Novosibirsk, Russian Federation
Vasilii Aleksandrovich Shvets
Affiliation:
A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva ave., 630090 Novosibirsk, Russian Federation
Vladimir Alekseevich Gritsenko
Affiliation:
A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva ave., 630090 Novosibirsk, Russian Federation
Tatijana Ivanovna Asanova
Affiliation:
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev ave., 630090 Novosibirsk, Russian Federation
Simon Borisovich Erenburg
Affiliation:
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev ave., 630090 Novosibirsk, Russian Federation
*
Get access

Abstract

Rare earth gadolinium oxide film has been studied by X-ray absorption fine structure (XAFS) at Gd L3-edge and energy electron loss spectroscopy (EELS) spectroscopies. XAFS data showed that the nearest Gd coordination shells consist of six oxygen atoms at ~2.308(2) Å and six gadolinium atoms at ~3.57(2) Å corresponding to Gd2O3 with a space group of Ia-3. EELS analysis of the film revealed excitations at the energies of 14.2, 19.9 eV which are due to electron transition from the valence band to the conductive one; excitations at the energies of 22.2–23.5 eV originated from valence electrons plasmon oscillations (bulk plasmons); and the excitation at 5.5 eV resulted from the electron transition at defects. When the photon energy changed from 1.5 to 5.0 eV the refractive index increased from 1.92 to 2.15.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ren, F., Hong, M., Chu, S.N.G., Marcus, M.A., Schurman, M.J., Baca, A., Pearton, S.J., Abernathy, C.R., Appl. Phys. Lett. 73, 3893 (1998)CrossRef
Kwo, J., Hong, M., Kortan, A.R., Queeney, K.T., Chabal, Y.J., Mannaerts, J.P., Boone, T., Krajewski, J.J., Sergent, A.M., Rosamilia, J.M., Appl. Phys. Lett. 77, 130 (2000)CrossRef
Kingon, A.I., Maria, J.-P., Streiffor, S.K., Nature 406, 1032 (2000)CrossRef
Robertson, J., Eur. Phys. J. Appl. Phys. 28, 265 (2004)CrossRef
Perevalov, T.V., Gritsenko, V.A., Physics Uspekhi 53, 561 (2010)CrossRef
Roizin, Y., Gritsenko, V., in Dielectric Films for Advanced Microelectronics , edited by Baklanov, M.R., Green, M., Maex, K. (Wiley & Sons, , New York, 2007)Google Scholar
Cao, X., Li, X., Gao, X., Yu, W., Liu, X., Zhang, Y., Chen, L., Cheng, X., J. Appl. Phys. 106, 073723 (2009)CrossRef
Waser, R., Aono, M., Nature Mater. 6, 833 (2007)CrossRef
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., Nature 453, 80 (2008)CrossRef
Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A., Stewart, D.R., Williams, S., Nat. Nanotechnol. 3, 429 (2008)CrossRef
Kelly, R., Radiation Effects 32, 91 (1977)CrossRef
Ravel, B., Newville, M., J. Synchrotron Radiat. 12, 537 (2005)CrossRef
Rehr, J.J., Albers, R.C., Rev. Mod. Phys. 72, 621 (2000)CrossRef
Haire, R.G., Eyring, L., in Handbook on the Physics and Chemistry of Rare Earths, Vol. 18, Lanthanides/Actinides: Chemistry, Comparisons of the binary oxides , edited by Gschneidner, K.A. Jr., Eyring, L., Choppin, G.R., Lander, G.R. (Elsevier Science B.V., North-Holland, 1994), Chap. 125Google Scholar
Inorganic Crystal Structure Database 2003 Collection http://icsd.ill.fr/icsd, Entry #41270
Ito, T., Maeda, M., Nakamura, K., Kato, H., Ohki, Y., J. Appl. Phys. 97, 054104 (2005)CrossRef
Afanas’ev, V.V., Stesmans, A., Passlack, M., Medendorf, N., Appl. Phys. Lett. 85, 597 (2004)CrossRef
Rojkov, V.A., Petrov, A.I., Shavarina, E.A., Phys. Wave Phenom. 3, 57 (2000)
Houssa, M., Tuominen, M., Naili, M., Afanas’ev, V., Stesmans, A., Haukka, S., Heyns, M.M., J. Appl. Phys. 87, 8615 (2000)CrossRef
Kimura, H., Mizuki, J., Kamiyama, S., Suzuki, H., Appl. Phys. Lett. 66, 2209 (1995)CrossRef
Kamiyama, S., Watanabe, H., Sakai, A., Kimura, H., Mizuki, J., J. Electrochem. Soc. 141, 1246 (1994)CrossRef
Takeuchi, H., Ha, D., King, T.-J., J. Vac. Sci. Technol. A 22, 1337 (2004)CrossRef
Kim, H., McInture, P.C., Appl. Phys. Lett. 82, 106 (2003)CrossRef
Kim, H.-S., Gilmer, D.C., Campbell, S.A., Polla, D.L., Appl. Phys. Lett. 69, 3860 (1996)CrossRef
Perevalov, T.V., Tereshenko, O.E., Gritsenko, V.A., Pustovarov, V.A., Yelisseyev, A.P., Park, C., Han, J.H., Lee, C., J. Appl. Phys. 108, 013501 (2010)CrossRef
Perevalov, T.V., Aliev, V.S., Gritsenko, V.A., Saraev, A.A., Kaichev, V.V., Microelectron. Eng. 109, 21 (2013)CrossRef