Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T12:36:35.601Z Has data issue: false hasContentIssue false

Assessment of mixing in passive microchannels with fractal surface patterning

Published online by Cambridge University Press:  12 June 2009

P. S. Fodor*
Affiliation:
Physics Department, Cleveland State University, Cleveland, OH 44115, USA
M. Itomlenskis
Affiliation:
Physics Department, Cleveland State University, Cleveland, OH 44115, USA
M. Kaufman
Affiliation:
Physics Department, Cleveland State University, Cleveland, OH 44115, USA
Get access

Abstract

We explore numerically the feasibility of enhancing the mixing capability of microchannels by employing the Weierstrass fractal function to generate a pattern of V-shaped ridges on the channel floor. Motivated by experimental limitations such as the finite resolution (~10 μm) associated with rapid prototyping through soft lithography techniques, we study the influence on the quality of mixing of having finite width ridges. The mixing capability of the designs studied is evaluated using an entropic measure and the designs are optimized with respect to: the distances between the ridges and the position range of their tip along the width of the channels. The results are evaluated with respect to the benchmarks established by the very successful staggered herring bone (SHB) design. We find that the use of a non periodic protocol to generate the geometry of the bottom surface of the microchannels can lead to consistently larger entropic mixing indices than in cyclic structures. Furthermore, since the optimization curves (mixing index vs. geometric parameters) are broader at the maximum for fractal microchannels than for their SHB counterparts, the microchannel designs using the Weierstrass fractal function are less sensitive to experimental uncertainties.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whitesides, G.M., Nature 442, 368 (2006) CrossRef
Kang, L., Chung, B.J., Langer, R., Khademhosseini, A., Drug Discovery Today 13, 1 (2008) CrossRef
Daw, R., Finkelstein, J., Nature 442, 367 (2006) CrossRef
R.E. Oosterbroek, A. Bergn, Lab on a Chip: Miniaturized Systems for (bio)chemical Analysis and Synthesis (Elsevier, Amsterdam, 2006)
Barry, R., Ivanov, D.J., J. Nanobiotechnol. 2, 2 (2004) CrossRef
Dittrich, P.S., Manz, A., Nature Rev. Drug Discovery 5, 210 (2006) CrossRefPubMed
Ehrnström, R., Lab. Chip 2, 26N (2002) CrossRef
McDonald, J.C., Duffy, D.C., Anderson, J.R., Chiu, D.T., Wu, H., Shuller, J.A., Whitesides, G.M., Electrophoresis 21, 27 (2000) 3.0.CO;2-C>CrossRef
Stone, H.A., Stroock, A.D., Ajdari, A., Annu. Rev. Fluid Mech. 36, 381 (2004) CrossRef
Squires, T.M., Quake, S.R., Rev. Mod. Phys. 77, 977 (2005) CrossRef
Lynn, N.S., Henry, C.S., Dandy, D.S., Microfluid. Nanofluid. 5, 493 (2008) CrossRef
Suzuki, H., Ho, C.M., Kasagi, N., J. Micromech. Syst. 13, 779 (2004) CrossRef
Horiuchi, K., Dutta, P., Richards, C.D., Microfluid. Nanofluid. 3, 347 (2007) CrossRef
Z. Yang, H. Goto, M. Matsumoto, R. Maeda, Microelectromech. Syst. 80 (2000)
Therriault, D., White, S.R., Lewis, J.A., Nat. Mat. 2, 265 (2002) CrossRef
Cha, J., Kim, J., Ryu, S.K., Park, J., Jeong, Y., Park, S., Park, S., Kim, H.C., Chun, K., J. Micromech. Microeng. 16, 1778 (2006) CrossRef
Park, J.M., Kim, D.S., Kang, T.G., Kwon, T.H., Microfluid. Nanofluid. 4, 513 (2008) CrossRef
Sudarsan, A.P., Ugaz, V.M., Lab. Chip 6, 74 (2006) CrossRef
Jiang, F., Drese, K.S., Hardt, S., Kupper, M., Schonfeld, F., AIChE J. 50, 2297 (2004) CrossRef
Stroock, A.D., Dertinger, S.K., Ajdari, A., Mezic, I., Stone, H.A., Whitesides, G.M., Science 295, 647 (2002) CrossRef
Kim, D.S., Lee, S.W., Kwon, T.H., Lee, S.S., J. Micromech. Microeng. 14, 798 (2004) CrossRef
Sato, H., Ito, S., Tajima, K., Orimoto, N., Shogi, S., Sens. Actuat. A Phys. 119, 365 (2005) CrossRef
Hassell, D.G., Zimmerman, W.B., Chem. Eng. Sci. 61, 2977 (2006) CrossRef
Kee, S.P., Gavriilidis, A., Chem. Eng. Sci. 142, 109 (2008) CrossRef
Li, C.A., Chen, T.N., Sens. Actuat. B 106, 871 (2005) CrossRef
Williams, M.S., Longmuir, K.J., Yager, P., Lab. Chip 8, 1121 (2008) CrossRef
Wang, H.Z., Iovenitti, P., Harvey, E., Masood, S., J. Micromech. Microeng. 13, 801 (2003) CrossRef
Aubin, J., Fletcher, D.H., Xuereb, C., Chem. Eng. Sci. 60, 2503 (2005) CrossRef
Lynn, N.S., Dandy, D.S., Lab. Chip 7, 580 (2007) CrossRef
Yang, J.T., Huang, K.J., Lin, Y.C., Lab. Chip 5, 1140 (2005) CrossRef
Camesasca, M., Kaufman, M., Manas-Zloczower, I., J. Micromech. Microeng. 16, 2298 (2006) CrossRef
C.E. Shannon, W. Weaver, Mathematical Theory of Communication (University of Illinois Press, Urbana, 1963)
A.I. Khinchin, Mathematical Foundations of Information Theory (Dover, New York, 1957)
Camesasca, M., Manas-Zloczower, I., Kaufman, M., J. Micromech. Microeng. 15, 2038 (2005) CrossRef
Camesasca, M., Kaufman, M., Manas-Zloczower, I., Macromol. Theory Simul. 15, 595 (2006) CrossRef
M. Kaufman, M. Camesasca, I. Manas-Zloczower, L.A. Dudik, C. Liu, in Functionalized Nanoscale Materials, Devices and Systems (Springer, The Netherlands, 2008), p. 437
Johnson, T.J., Ross, D., Locascio, L.E., Anal. Chem. 74, 45 (2002) CrossRef
Stroock, A.D., Dertinger, S.K., Whitesides, G.M., Ajdari, A., Anal. Chem. 74, 5306 (2002) CrossRef
Kaufman, M., Nanoscale Microscale Thermophys. Eng. 11, 129 (2007) CrossRef