Published online by Cambridge University Press: 15 April 2000
Forward solution studies have been performed using a cellular automata computer model. This computational procedure has been applied to simulate cardiac tissue activation and its corresponding magnetic field generated has been calculated. The propagation pattern associated with different mechanisms of atrial flutter arrhythmia has been simulated. For each simulated pattern of propagation, one has investigated the effect on the magnetic field generated, produced by the introduction of a conduction inhomogeneity due to a slow-pathway. This latter represents the site of successful ablation in the treatment of atrial flutter. The analysis of different computational images obtained allowed one to characterize the possibility of identification of regions of slow conduction in the simulated cardiac tissues.