Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T12:31:07.818Z Has data issue: false hasContentIssue false

Annealing effect on structural and magnetic properties of Ta/Cu/FeMn/Co/FeMn/Ta thin film structures

Published online by Cambridge University Press:  15 August 2000

F. Bensmina
Affiliation:
IPCMS-GSI, ULP-CNRS (UMR 045), 23 rue du Loess, 67037 Strasbourg, France
A. Dinia*
Affiliation:
IPCMS-GEMM, ULP-CNRS (UMR 045), 23 rue du Loess, 67037 Strasbourg, France
C. Mény
Affiliation:
IPCMS-GEMM, ULP-CNRS (UMR 045), 23 rue du Loess, 67037 Strasbourg, France
P. Panissod
Affiliation:
IPCMS-GEMM, ULP-CNRS (UMR 045), 23 rue du Loess, 67037 Strasbourg, France
D. Muller
Affiliation:
CNRS-PHASE, BP 20, 67037 Strasbourg, France
Get access

Abstract

We report on the annealing effect on the structural and magnetic properties of Ta5nm/Cu5nm/FeMn8nm/Co8nm/FeMn8nm/Ta5nm samples prepared by sputtering, on silicon substrate, at room temperature. For the as-deposited samples the interfacial exchange anisotropy field (He) between the Co and FeMn layers is about 95 Oe. It increases sensitively with annealing to reach a maximum value of 135 Oe at 240 °C annealing temperature. Above this temperature, we observe a strong decrease of He, down to 90 Oe after annealing at 280 °C, and an increase of 50% of the saturation magnetization. In order to understand the effect of the annealing on the magnetic properties, we performed a detailed structural analysis by means of Rutherford back scattering spectroscopy (RBS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). All these techniques attribute the large changes in the magnetic properties to the formation of a new ferromagnetic FeMnCo phase at the FeMn/Co interfaces.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D., Phys. Rev. B 43, 1297 (1991). CrossRef
Meiklejohn, W.H., Bean, C.P., Phys. Rev. 102, 1413 (1956). CrossRef
Speriosu, V.S., Nozières, J.P., Gurney, B.A., Dieny, B., Huang, T.C., Lefakis, H., Phys. Rev. B 47, 11579 (1993). CrossRef
Mény, C., Jay, J.P., Panissod, P., Humbert, P., Speriosu, V.S., Lefakis, H., Nozières, J.P., Gurney, B.A., Mater. Res. Soc. Symp. Proc. 313, 289 (1993). CrossRef
P. Panissod, J.P. Jay, C. Mény, M. Wojcik, E. Jedryka, Hyperfine Interac. 97/98, 75 (1996).
M. Hansen, K. Ardenko, Constitution of binary alloys (New York: McGraw-Hill, 1958).
Speriousu, V., Parkin, S.S.P., Wilts, C.H., IEEE. Trans. Magn. 23, 2999 (1987). CrossRef
Nakatani, R., Hoshino, K., Noguchi, S., Sugita, Y., Jpn. J. Appl. Phys. 33, 133 (1994). CrossRef
Bayle-Guillemaud, P., Petford-Long, A.K., Anthony, T.C., Brug, J.A., IEEE Trans. Magn. 32, 4627 (1996). CrossRef
Tsang, C., Heiman, N., Lee, K., J. Appl. Phys. 52, 2471 (1981). CrossRef
Tsang, C., Lee, K., J. Appl. Phys. 53, 2605 (1982). CrossRef
Toney, M.F., Tsang, C., Howard, J.K., J. Appl. Phys. 70, 6227 (1991). CrossRef
Yasuoka, H., Hoshinouci, S., Nakamura, Y., Matsui, M., Adachi, K., Phys. Stat. Sol. B 46, K81 (1971). CrossRef
Jay, J.-Ph., Wojcik, M., Panissod, P., Z. Phys. B 101, 471 (1996). CrossRef
Budnick, J.I., Burch, T.J., Skalski, S., Raj, K., Phys. Rev. Lett. 24, 511 (1970). APS Link not valid for this citation CrossRef
P. Villars, A. Prince, H. Okamoto, Handbook of ternary alloy phase diagrams (ASM International, 1995), Vol. 6.