Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T05:03:50.203Z Has data issue: false hasContentIssue false

Annealing ambient controlled deep defect formation in InP

Published online by Cambridge University Press:  15 July 2004

Y. W. Zhao*
Affiliation:
Materials Science Centre, Institute of Semiconductors, Chinese Academy of Science, PO Box 912, Beijing 100083, P.R. China
Z. Y. Dong
Affiliation:
Materials Science Centre, Institute of Semiconductors, Chinese Academy of Science, PO Box 912, Beijing 100083, P.R. China
M. L. Duan
Affiliation:
Materials Science Centre, Institute of Semiconductors, Chinese Academy of Science, PO Box 912, Beijing 100083, P.R. China
W. R. Sun
Affiliation:
Materials Science Centre, Institute of Semiconductors, Chinese Academy of Science, PO Box 912, Beijing 100083, P.R. China
Y. P. Zeng
Affiliation:
Materials Science Centre, Institute of Semiconductors, Chinese Academy of Science, PO Box 912, Beijing 100083, P.R. China
N. F. Sun
Affiliation:
Hebei Semiconductor Research Institute, PO Box 179, Shijiazhuang 050051, Hebei, P.R. China
T. N. Sun
Affiliation:
Hebei Semiconductor Research Institute, PO Box 179, Shijiazhuang 050051, Hebei, P.R. China
Get access

Abstract

Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while InP annealed in iron phosphide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chiao, S. H., Antypas, G. A., J. Appl. Phys. 49, 466 (1978) CrossRef
Temkin, T., Dutt, B. V., Bonner, W. A., Appl. Phys. Lett. 38, 431 (1981) CrossRef
von Bardeleben, H. J., Stievenard, D., Kainosho, K., Oda, O., J. Appl. Phys. 70, 7392 (1991) CrossRef
Avella, M., Jimenez, J., Alvarez, A., Fornari, R., Gilioli, E., Sentiri, A., J. Appl. Phys. 82, 3836 (1997) CrossRef
Fukuzawa, Masayuki, Herms, Martin, Uchida, Masayuki, Oda, Osamu, Yamada, Masayoshi, Jpn. J. Appl. Phys. 38, 1156 (1999) CrossRef
Hofmann, D., Müller, G., Streckfuss, N., Appl. Phys. A 48, 315 (1989) CrossRef
Kainosho, K., Shimakura, H., Yamamoto, H., Oda, O., Appl. Phys. Lett. 59, 932 (1991) CrossRef
Fomari, R., Zappettini, A., Gombia, E., Mosca, R., Cherkaoui, K., Marrakchi, G., J. Appl. Phys. 81, 7604 (1997)
Uchida, M., Asahi, T., Kainosho, K., Matsuda, Y., Oda, O., Jpn J. Appl. Phys. 38, 986 (1999)
Wolf, D., Hirt, G., Müller, G., J. Electron. Mater. 24, 933 (1995) CrossRef
Zhao, Y. W., Dong, H. W., Chen, Y. H., Zhang, Y. H., Jiao, J. H., Zhao, J. Q., Lin, L. Y., Fung, S., Appl. Phys. Lett. 80, 2878 (2002) CrossRef
Zhao, Y. W., Dong, H. W., Jiao, J. H., Zhao, J. Q., Lin, L. Y., Sun, N. F., Sun, T. N., Chinese J. Semicon. 23, 285 (2002)
Kipfer, P., Lindolf, J., Hofmann, D., Müller, G., J. Appl. Phys. 69, 3860 (1993) CrossRef
Fung, S., Nicholas, R. J., Stradling, R. A., J. Phys. C: Solid State Phys. 12, 5145 (1979) CrossRef
Marrakchi, G., Cherkaoui, K., Karoui, A., Hirt, G., Müller, G., J. Appl. Phys. 79, 6947 (1996) CrossRef
Skolnick, M. S., Foulkes, E. J., Tucck, B., J. Appl. Phys. 55, 2951 (1984) CrossRef
Bretagon, T., Dannefaer, S., Kerr, D., J. Appl. Phys. 73, 4697 (1997) CrossRef
Corbel, C., Leberre, C., Saarinen, K., Hautojarvi, P., Mater. Sci. Eng. B 44, 173 (1997) CrossRef