Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:04:43.017Z Has data issue: false hasContentIssue false

Analysis of transconductance characteristic of AlGaN/GaN HEMTs with graded AlGaN layer

Published online by Cambridge University Press:  05 June 2014

Shenqi Qu
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Xiaoliang Wang*
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, 710049 Xi’an, P.R. China
Hongling Xiao
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Cuimei Wang
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Lijuan Jiang
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Chun Feng
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Hong Chen
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Haibo Yin
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Enchao Peng
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
He Kang
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Zhanguo Wang
Affiliation:
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, 100083 Beijing, P.R. China
Xun Hou
Affiliation:
ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, 710049 Xi’an, P.R. China
*
Get access

Abstract

A theoretical study of transconductance characteristics (gm − Vgs profile) of AlGaN/GaN high electron mobility transistors (HEMTs) with a graded AlGaN layer is given in this paper. The calculations were made using a self-consistent solution of the Schrödinger-Poisson equations and an AlGaN/GaN HEMTs numerical device model. Transconductance characteristics of the devices are discussed while the thickness and Al composition of the graded AlGaN layer are optimized. It is found that graded AlGaN layer structure can tailor device’s gm − Vgs profile by improving polar optical phonon mobility and interface roughness mobility. Good agreement is obtained between the theoretical calculations and experimental measurements over the full range of applied gate bias.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smorchkova, I.P., et al., Appl. Phys. Lett. 77, 3998 (2000)CrossRef
Cao, Y., Jena, D., Appl. Phys. Lett. 90, 182112 (2007)CrossRef
Shinohara, K., et al., Electron Devices Meeting (IEDM), IEEE International, 2010, pp. 30.1.1Google Scholar
Corrion, A.L., et al., IEEE Electron Device Lett. 31, 1116 (2010)CrossRef
Chung, J., et al., Electron Devices Meeting (IEDM), IEEE International, 2010, pp. 30.2.1Google Scholar
Shinohara, K., et al., IEEE Electron Device Lett. 32, 1074 (2011)CrossRef
Palacios, T., et al., IEEE Trans. Electron Devices 53, 562 (2006)CrossRef
Trew, R.J., et al., IEEE Trans. Microwave Theor. Tech. 54, 2061 (2006)CrossRef
Jie, L., et al., IEEE Electron Device Lett. 26, 145 (2005)
Sung Park, P., et al., Appl. Phys. Lett. 100, 063507 (2012)CrossRef
Yamakawa, S., et al., J. Appl. Phys. 79, 911 (1996)CrossRef
Hsu, L., Walukiewicz, W., Phys. Rev. B 56, 1520 (1997)CrossRef
Yu, T.-H., Brennan, K.F., J. Appl. Phys. 89, 3827 (2001)CrossRef
Asgari, A., Babanejad, S., Faraone, L., J. Appl. Phys. 110, 113713 (2011)CrossRef
Tan, I., et al., J. Appl. Phys. 68, 4071 (1990)CrossRef
Bi, Y., et al., Eur. Phys. J. Appl. Phys. 55, 10102 (2011)CrossRef
Ding, J., et al., J. Alloys Compd. 523, 88 (2012)CrossRef
Guo, L., et al., J. Cryst. Growth 298, 522 (2007)CrossRef
Guo, L., et al., Microelectron. J. 39, 777 (2008)CrossRef
Asgari, A., J. Appl. Phys. 95, 1185 (2004)CrossRef
Miao, L., Yan, W., IEEE Trans. Electron Devices 55, 261 (2008)
Li, M., Wang, Y., Chin. Phys. Lett. 24, 2998 (2007)
Cheng, X.X., Li, M., Wang, Y., IEEE Trans. Electron Devices 56, 2881 (2009)CrossRef
Katz, O., et al., IEEE Trans. Electron Devices 50, 2002 (2003)CrossRef