No CrossRef data available.
Published online by Cambridge University Press: 27 March 2009
In this study, new possibilities for higher efficiency poly-Si thin film solar cells are investigated using MEDICITM device simulator. The poly-Si p +-n-n + thin film solar cell with a thin a-Si p + layer is found to have higher efficiency than the homojunction p +-n-n + cell. Further improvement in efficiency of the heterojunction p +-n-n + cell is achieved by introducing a thin μc-Si layer at the interface of a-Si emitter and poly-Si absorber layers. The μc-Si layer at the interface is found to reduce the recombination losses at the interface and improved the fill factor and efficiency of the cell. The photovoltaic parameters of the cell and the absorber layer thickness for optimum efficiency are highly influenced by grain size and passivation at the grain boundary.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.