Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:03:56.118Z Has data issue: false hasContentIssue false

Analysis of current and electric field distributions beneath a positive DC wire-to-plane corona

Published online by Cambridge University Press:  19 November 2002

H. Yala
Affiliation:
Laboratoire de Génie Électrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
A. Kasdi
Affiliation:
Laboratoire de Génie Électrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Y. Zebboudj*
Affiliation:
Laboratoire de Génie Électrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Get access

Abstract

A new iterative scheme coupled with finite element technique is proposed as a numerical tool to solve Poisson's equation in a positive DC wire-to-plane corona using new boundary conditions. We used the model which separates the corona in two distinct regions. The ionisation region radius and the electric field at the ionisation-region/drift-region (IRDR) interface, which corresponds to a zero net ionisation coefficient of the ambient air, are developed by Hartmann in his investigation on the generalisation of the Peek's law. The proposed model allow to take into account the ionisation region thickness and thus avoids the recourse to the first Deutsch assumption, largely used in the literature. The effectiveness of the proposed method has been tested through application to the wire-to-plane geometry where the field has been measured with the linear biased probe. The agreement between the present calculated current density and electric field profiles as compared to the measured values is satisfactory.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deutsch, W., Ann. Phys. 5, 588 (1933) CrossRef
Jones, J.E., J. Phys. D Appl. Phys. 25, 1749 (1992) CrossRef
N.A. Kaptzov, Elektricheskie Invlentiia v Gazakh i Vakuumme (OGIZ Moscow (URSS), 1947), pp. 587-630
F.W. Peek, Dielectric phenomena in H. V. engineering (Mc Graw Hill, 1929), pp. 52-80
Y. Zebboudj, Influence de l'humidité de l'air atmosphérique sur les paramètres de la décharge couronne positive en géométrie cylindrique, thèse de Doctorat, Octobre 1988, Université Paris 6 (France)
Zebboudj, Y., Ikene, R., Eur. Phys. J. AP 10, 211 (2000) CrossRef
Zebboudj, Y., Hartmann, G., Eur. Phys. J. AP 7, 167 (1999) CrossRef
G. Hartmann, IEEE Trans. Ind. Appl. IA-20, 1647 (1984)
J.S. Townsend, Die ionisation der gase (Handbuchs der radiologie von MARX, Leipzig, 1920), Bd. I
J.J. Thomson, G.P. Thomson, Conduction of electricity through gases (London CUP, 1933), Vol. 2
Zebboudj, Y., Ikene, R., Hartmann, G., Eur. Phys. J. AP 6, 195 (1999) CrossRef
Zebboudj, Y., IEE Proc. Meas. Technol. 147, 74 (2000) CrossRef
Abdel-Salam, M., Al-Hamouz, Z., IEEE Trans. Ind. Appl. 31, 484 (1995) CrossRef
Medlin, A.J., Fletcher, C.A.J., Morrow, R., J. Electrostat. 43, 39 (1998) CrossRef
Medlin, A.J., Fletcher, C.A.J., Morrow, R., J. Electrostat. 43, 61 (1998) CrossRef
Warburg, E., Wied. Ann. 67, 68 (1899)
E. Warburg, Handbuch der Physik (Springer, Berlin, 1927), Vol. 14, pp. 154-155
Hara, M., Hayashi, N., Shiotsuki, K., Akazaki, M., IEEE Trans. Power Apparat. and Syst. 101, 803 (1982) CrossRef
Carreno, F., J. Phys. D Appl. Phys. 27, 2136 (1994) CrossRef
J.R. Melcher, Continuum Electromechanics (Mit Press, 1981)
Davis, J.L., Hoburg, J.F., J. Electrostat. 18, 1 (1986) CrossRef