Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T03:56:01.802Z Has data issue: false hasContentIssue false

All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode

Published online by Cambridge University Press:  27 August 2013

Yun-Tuan Fang*
Affiliation:
School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
Jing Zheng
Affiliation:
School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
Li-Xia Yang
Affiliation:
School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
Xiang Zhou
Affiliation:
School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
*
Get access

Abstract

Light propagation in a coupled system of Tamm plasmon-polariton and nonlinear cavity mode is theoretically investigated through the nonlinear transfer matrix method. It is found that the asymmetric layered structure exhibits both pronounced unidirectionality and high transmission. This leads to all-optical diode actions. Compared with other similar studies, the designed structure is much simple only with seven periods. The unique feature is that the direction of on-off can be reversed depending on the working frequencies. The effect of metal loss is also considered in this study.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kaliteevski, M., et al., Phys. Rev. B 76, 165415 (2007)CrossRef
Shelykh, I.A., Kaliteevski, M., Kavokin, A.V., Brand, S., Abram, R.A., Chamberlain, J.M., Malpuech, G., Phys. Status Solidi A 204, 522 (2007)CrossRef
Sasin, M.E., Seisyan, R.P., Kalitteevski, M.A., Brand, S., Abram, R.A., Chamberlain, J.M., Egorov, A.Y., Vasil’ev, A.P., Mikhrin, V.S., Kavokin, A.V., Appl. Phys. Lett. 92, 251112 (2008)CrossRef
Gong, Y., Liu, X., Lu, H., Wang, L., Wang, G., Opt. Express 19, 18393 (2011)CrossRef
Zhou, H., Yang, G., Wang, K., Long, H., Lu, P., Opt. Lett. 35, 4112 (2010)CrossRef
Zhang, W.L., Yu, S.F., Opt. Commun. 283, 2622 (2010)CrossRef
Dong, H.Y., Wang, J., Cui, T.J., Phys. Rev. B 87, 045406 (2013)CrossRef
Xue, C.H., Jiang, H.T., Chen, H., Opt. Lett. 36, 855 (2011)CrossRef
Homeyer, E., Symonds, C., Lemaître, A., Plenet, J.-C., Bellessa, J., Superlattices Microstruct. 49, 224 (2010)CrossRef
Grossmann, C., Coulson, C., Christmann, G., Farrer, I., Beere, H.E., Ritchie, D.A., Baumberg, J.J., Appl. Phys. Lett. 98, 231105 (2011)CrossRef
Iorsh, I., Shadrivov, I.V., Belovl, P.A., Kivshar, Y.S., Phys. Status Solidi RRL 6, 43 (2012)CrossRef
Born, M., Wolf, E., Principles of Optics, 7th edn. (Cambridge U. Press, 1999)CrossRef
Barnes, W.L., Opt. A: Pure Appl. Opt. 8, S87 (2006)CrossRef
Zhukovsky, S.V., Smirnov, A.G., Phys. Rev. A 83, 023818 (2011)CrossRef
Biancalana, F., J. Appl. Phys. 104, 093113 (2008)CrossRef
Nava, R., Tagüeña-Martínez, J., del Río, J.A., Naumis, G.G., J. Phys. Condens. Matter 21, 155901 (2009)CrossRef
Grigoriev, V., Biancalana, F., New J. Phys. 12, 053041 (2010)CrossRef
Grigoriev, V., Biancalana, F., Opt. Lett. 36, 2131 (2011)CrossRef
Walasik, W., Nazabal, V., Chauvet, M., Kartashov, Y., Renversez, G., Opt. Lett. 37, 4579 (2012)CrossRef