Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T18:07:34.951Z Has data issue: false hasContentIssue false

AlGaN/GaN/InGaN/GaN DH-HEMTs with GaN channel layer grown at high temperature

Published online by Cambridge University Press:  22 May 2013

Lu Zhang
Affiliation:
Beijing Optoelectronic Technology Lab, Beijing University of Technology, Beijing 100022, P.R. China Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
Xiaoliang Wang*
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China Xi’an Jiaotong University, Xi’an 710049, P.R. China
Hongling Xiao
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
Hong Chen
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
Chun Feng
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
Guangdi Shen
Affiliation:
Beijing Optoelectronic Technology Lab, Beijing University of Technology, Beijing 100022, P.R. China
Zhanguo Wang
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
Xun Hou
Affiliation:
Xi’an Jiaotong University, Xi’an 710049, P.R. China
*
a e-mail: [email protected]
Get access

Abstract

The AlGaN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) sample has been grown by MOCVD on (0 0 0 1) sapphire substrate. The structure features a 7 nm In0.046Ga0.954N interlayer determined by Rutherford backscattering (RBS). Since the polarization field in the InGaN interlayer is opposite to it in the AlGaN layer, an additional potential barrier is introduced between the two-dimensional electron gas (2DEG) channel and buffer, leading to enhanced carrier confinement and improved buffer isolation. The GaN layers between the AlGaN layer and InGaN interlayer are divided into two layers consisting of GaN channel layer which provides high mobility 2DEG grown at 1070 °C and GaN spacer layer grown at the same temperature as InGaN interlayer (800 °C) to prevent indium diffusion. RBS measurement confirms that the 3 nm GaN spacer layer isolates the InGaN interlayer well and free from diffusion. Hall measurement has been performed, the mobility as high as 1552 cm2/V s at room temperature is obtained and the sheet carrier density is 1.55 × 1013 cm−2. The average sheet resistance is 331 Ω/sq, respectively. The mobility obtained in this paper is about 20% higher than similar structures reported.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mishra, U.K., Shen, L., Kazior, T.E., Wu, Y.-F., Proc. IEEE 96, 287 (2008)CrossRef
Wu, Y.F. et al., IEEE Electron. Dev. Lett. 25, 117 (2004)CrossRef
Shen, L. et al., Electron. Lett. 42, 555 (2006)CrossRef
Wang, X.L., Wang, C.M., Hu, G.X., Wang, J.X., Li, J.P., Phys. Stat. Sol. C 3, 607 (2006)CrossRef
Wang, X.L., Wang, C.M., Hu, G.X., Wang, J.X., Chen, T.S., Jiao, G., Solid-State Electron 49, 1387 (2005)CrossRef
Khan, M.A., Shur, M.S., Simin, G., Phys. Stat. Sol. A 200, 155 (2003)CrossRef
Maeda, N., Saitoh, T., Tsubaki, K., Nishida, T., Kobayashi, N., Appl. Phys. Lett. 76, 3118 (2000)CrossRef
Simin, G., Hu, X., Tarakji, A., Zhang, J., Koudymov, A., Saygi, S., Yang, J., Khan, M.A., Shur, M., Gaska, R., Jpn J. Appl. Phys. 40, L1142 (2001)CrossRef
Simin, G., Koudymov, A., Fatima, H., Zhang, J., Yang, J., Khan, M.A., Hu, X., Tarakji, A., Gaska, R., Shur, M., IEEE Electron. Dev. Lett. 23, 458 (2002)CrossRef
Ran, J.X. et al., in Proceedings 8th Internat. Conf. on Solid-State and Integrated Circuit Technology, Shanghai, China, 2006, Part 2 (IEEE, Shanghai, 2006), pp. 929931CrossRefGoogle Scholar
Simin, G. et al., IEEE Electron. Dev. Lett. 23, 458 (2002)CrossRef
Palacios, T., Chakraborty, A., Heikman, S., Keller, S., DenBaars, S.P., IEEE Electron. Dev. Lett. 27, 13 (2006)CrossRef
Liu, J., Zhou, Y., Zhu, J., Lau, K.M., Chen, K.J., IEEE Electron. Dev. Lett. 27 (2006)
Sasaki, T., Matsuoka, T., J. Appl. Phys. 77, 192 (1995)CrossRef
Sakuta, H., Kawano, Y., Yamanaka, Y., Kurai, S., Taguchi, T., Phys. Stat. Sol. C 2, 2407 (2005)CrossRef
Hirsch, L. et al., Phys. Stat. Sol. A 195, 502 (2003)CrossRef