Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:20:40.849Z Has data issue: false hasContentIssue false

Aerodynamic focusing of clusters into a high intensity and low divergence supersonic beam

Published online by Cambridge University Press:  15 November 2001

H. Vahedi Tafreshi
Affiliation:
INFM-Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
G. Benedek
Affiliation:
INFM-Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
P. Piseri
Affiliation:
INFM-Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy
S. Vinati
Affiliation:
INFM-Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy
E. Barborini
Affiliation:
INFM-Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy
P. Milani*
Affiliation:
INFM-Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy
Get access

Abstract

Experiments have shown that highly intense and collimated cluster beams can be produced by a simple aerodynamic lens coupled to the nozzle of a pulsed microplasma cluster source. The mechanism of the observed cluster focusing is here presented. We discuss, as a case example, a supersonic beam of helium seeded by carbon clusters. The laminar flow of the helium-clusters mixture through a focalizing nozzle assembly has been numerically simulated and compared to the experiments. A three-dimensional steady compressible flow model has been considered for the simulation. Carbon clusters have been modeled by rigid spheres with uniform density. The trajectories of the particles are calculated during their travel through the nozzle. The simulations show that the effect of the focalizing nozzle is to divert the particles from their streamlines towards the center of the beam, thus narrowing the spatial and velocity cluster distribution. The dependence of these effects on the nozzle geometry and on the beam parameters is reproduced by the simulations in good agreement with the experimental findings.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jensen, P., Rev. Mod. Phys. 71, 1695 (2000), and references therein. CrossRef
P. Milani, S. Iannotta, Cluster beam synthesis of nanostructured materials (Springer Verlag, Berlin, 1999).
Perez, A. et al., J. Phys. D Appl. Phys. 30, 709 (1997). CrossRef
Yamamuro, S., Sumiyama, K., Suzuki, K., J. Appl. Phys. 85, 483 (1999). CrossRef
Becker, E.W., Bier, K., Z. Naturforsch. 9a, 975 (1954).
Waterman, P.C., Stern, S.A., J. Chem. Phys. 31, 405 (1959). CrossRef
Reis, V.H., Fenn, J.B., J. Chem. Phys. 39, 3240 (1963). CrossRef
Israel, G.W., Friedlander, S.K., J. Colloid Interface Sci. 24, 330 (1967). CrossRef
Fernandez de, J. la Mora, J. Rosell-Llompart, J. Chem. Phys. 91, 2603 (1989). CrossRef
Fernandez de, J. la Mora, J. Chem. Phys. 82, 3453 (1985). CrossRef
Fernandez de, J. la Mora, P. Riesco-Chueca, J. Fluid Mech. 195, 1 (1988).
Liu, P., Ziemann, P.J., Kittelson, D.B., McMurry, P.H., Aerosol Sci. Technol. 22, 293 (1995); ibidem 22, 314 (1995). CrossRef
Fernandez de, J. la Mora, J. Chem. Eng. Comm. 151, 101 (1996).
D.R. Miller, in: Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University Press, Oxford, 1982).
Barborini, E., Piseri, P., Podesta', A., Milani, P., Appl. Phys. Lett. 77, 1059 (2000). CrossRef
Piseri, P., Podesta', A., Barborini, E., Milani, P., Rev. Sci. Instrum. 72, 2261 (2001). CrossRef
Barborini, E., Piseri, P., Milani, P., J. Phys. D Appl. Phys. 32, 105 (1999). CrossRef
F.M. White, Fluid mechanics, 2nd edn. (McGraw-Hill, 1986).
P. Piseri, Ph.D. thesis, Università di Milano, unpublished (2000).
S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington DC, 1980).
The FLUENT (trademark of FLUENT Inc.), The Navier-Stokes solution and the particle tracking are carried out by FLUENT 5.4.8, copyright 1999.
Bottani, C.E., Ferrari, A.C., Bassi, A. Li, Milani, P., Piseri, P., Europhys. Lett. 42, 431 (1998). CrossRef
W.C. Hinds, Aerosol Technology: properties, behavior, and measurement of airborne particles (Wiley, New York, 1982).
Li, A., Ahmadi, G., Aerosol Sci. Technol. 16, 209 (1992). CrossRef
Ounis, H., Ahmadi, G., McLaughlin, J.B., J. Colloid and Interface Sci. 143, 266 (1991). CrossRef
Milani, P., Barborini, E., Piseri, P., Bottani, C.E., Ferrari, A.C., Bassi, A. Li, Eur. Phys. J. D 9, 63 (1999). CrossRef
S. Vinati, Tesi di laurea, Universita' di Milano (2000), unpublished.