Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T11:04:54.313Z Has data issue: false hasContentIssue false

Ab initio calculations of elastic and thermodynamic properties of fcc-6LiF under high temperatures and pressures

Published online by Cambridge University Press:  23 December 2010

F. Wang*
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing, 400074, P.R. China
J. H. Wu
Affiliation:
Department of physics, Henan Institute of Education, Zhengzhou, 450046, P.R. China
Z. Zheng
Affiliation:
Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, 621900, P.R. China
C. H. Xia
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing, 400074, P.R. China
M. Zhou
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing, 400074, P.R. China
P. Zhou
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing, 400074, P.R. China
C. H. Hu
Affiliation:
School of Science, Chongqing Jiaotong University, Chongqing, 400074, P.R. China
P. C. Xu
Affiliation:
Institute of Theoretical Physics, China West Normal University, Nanchong, 637002, P.R. China
W. Y. Ren
Affiliation:
Institute of Theoretical Physics, China West Normal University, Nanchong, 637002, P.R. China
W. G. Sun
Affiliation:
Institute of Atomic and Molecular of Sichuan University, Chengdu, 610065, P.R. China
Get access

Abstract

The elastic and thermodynamic properties of fcc-6LiF under high temperatures and pressures are investigated using the ab initio method and quasi-harmonic Debye model. The lattice constant of 6LiF at ground state is a little larger than that of LiF. When pressure is less than 10 GPa, crystal lattice is compressed easily at low temperature, and when P> 10 GPa, lattice can be compressed easily at high temperature. C 11 increases with pressure and reduces with temperature sensitively. C 12 and C 44 raise or decrease just a little with increasing pressure and temperature. Heat capacity of different pressure increases with temperature and closes to the Dulong-Petit limit at higher temperatures. Debye temperature decreases with temperature, and increases with pressure. Furthermore, under lower pressure, thermal expansion coefficient raise rapidly with temperature, and the increasing trend will get slow at higher pressure.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

G. Taubes, Bad Science: The Short Life and Weird Times of Cold Fusion (Random House, New York, 1993)
Lang, B.E., Donaldson, M.H., Woodfield, B.F., Burger, A., Roy, U.N., Lamberti, V., Bell, Z.W., J. Nucl. Mater. 347, 125 (2005) CrossRef
Silver, C.S., Beeman, J., Piccirillo, L., Timbie, P.T., Zhou, J.W., Nucl. Instrum. Meth. Phys. Res. A 485, 615 (2002) CrossRef
Blanco, M.A., Francisco, E.,V. Luaña, Comput. Phys. Commun. 158, 57 (2004) CrossRef
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996) CrossRef
Hammer, B., Hansen, L.B., Nørskov, J.K., Phys. Rev. B 59, 7413 (1999) CrossRef
Payne, M.C., Teter, M.P., Allen, D.C., Arias, T.A., Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992) CrossRef
Milman, V., Winkler, B., White, J.A., Packard, C.J., Payne, M.C., Akhmatskaya, E.V., Nobes, R.H., Int. J. Quant. Chem. 77, 895 (2000) 3.0.CO;2-C>CrossRef
Lu, L.Y., Cheng, Y., Chen, X.R., Zhu, J., Physica B 370, 236 (2005) CrossRef
Blanco, M.A., Martín Pendás, A., Francisco, E., Recio, J.M., Franco, R., J. Molec. Struct. Theochem. 368, 245 (1996) CrossRef
Flórez, M., Recio, J.M., Francisco, E., Blanco, M.A., Pendás, A.M., Phys. Rev. B 66, 144112 (2002) CrossRef
Francisco, E., Recio, J.M., Blanco, M.A., Pendás, A.M., Costales, A., J. Phys. Chem. 102, 1595 (1998) CrossRef
Francisco, E., Blanco, M.A., Sanjurjo, G., Phys. Rev. B 63, 094107 (2001) CrossRef
J.P. Poirier, Introduction to the Physics of the Earth's Interior, Vol. 39 (Cambridge University Press, Oxford, 2000)
Hill, R., Proc. Phys. Soc. Lond. A 65, 349 (1952) CrossRef
Fast, L., Wills, J.M., Johansson, B., Eriksson, O., Phys. Rev. B 51, 17431 (1995) CrossRef
Sin'ko, G.V., Smirnow, N.A., J. Phys.: Condens. Matter 14, 6989 (2002)
Murnaghan, F.D., Proc. Natl. Acad. Sci. USA 30, 5390 (1944)
Ren, W.Y., Wang, F., Zheng, Z., Xu, P.C., Sun, W.G., J. Nucl. Mater. 404, 116 (2010)
Ren, W.Y., Xu, P.C., Sun, W.G., Physica B 405, 2057 (2010)
Wang, F., Wu, W.D., Tang, Y.J., Acta Phys. Sinica 59, 3589 (2010)
Katayama, M., Kiguchi, M., Saiki, K., Koma, A., J. Cryst. Growth 237-239, 269 (2002) CrossRef
Yakowitz, H., J. Appl. Phys. 43, 4793 (1972) CrossRef
Cortona, P., Phys. Rev. B: Condens. Matter 46, 2008 (1992) CrossRef
Einstein, A., Ann. Phys. 22, 180 (1907) CrossRef
Nernst, W., Lindemann, A.F., Z. Elektrochem. Angew. Phys. Chem. 17, 817 (1977)
Debye, P., Ann. Phys. 39, 789 (1912) CrossRef
Petit, A.T., Dulong, P.L., Ann. Chim. Phys. 10, 395 (1819)