Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T16:43:49.705Z Has data issue: false hasContentIssue false

3D finite element model for magnetoelectric sensors

Published online by Cambridge University Press:  21 October 2010

X. Mininger*
Affiliation:
Laboratoire de Génie Électrique de Paris, SUPELEC, Univ. Paris-Sud, UPMC Univ. Paris 06, CNRS (UMR 8507), 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
N. Galopin
Affiliation:
Grenoble Electrical Engineering Laboratory (G2Elab), CNRS UMR 5269 - INPG - UJF - ENSE3, BP 46, 38402 Saint-Martin-d'Hères Cedex, France
Y. Dennemont
Affiliation:
Laboratoire de Génie Électrique de Paris, SUPELEC, Univ. Paris-Sud, UPMC Univ. Paris 06, CNRS (UMR 8507), 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
F. Bouillault
Affiliation:
Laboratoire de Génie Électrique de Paris, SUPELEC, Univ. Paris-Sud, UPMC Univ. Paris 06, CNRS (UMR 8507), 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
Get access

Abstract

This paper presents a 3D numerical model of magnetoelectric sensors based on the finite element method. It is obtained using the association of magnetoelastic and piezoelectric behaviour laws. The 3D finite element formulation is evaluated on a bi-layer beam, combining magnetostrictive and piezoelectric materials, submitted to magnetic fields. These results are compared to the ones obtained with a validated 2D finite element model. At last, a cylindrical magnetoelectric sensor, which can not be modelled with a 2D analysis, is evaluated.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astrov, D.N., Sov. Phys. – JETP 11, 708 (1960)
Avellaneda, M., Harshe, G., J. Intel. Mater. Syst. Struct. 5, 501 (1994) CrossRef
Nan, C.W., Li, M., Feng, X., Yu, S., Appl. Phys. Lett. 78, 2527 (2001) CrossRef
Ryu, J., Caroja, A.V., Uchino, K., Kim, H.E., J. Electro-ceram. 7, 17 (2001) CrossRef
Lerch, R., IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 37, 233 (1990) CrossRef
Delincé, F., Genon, A., Gillard, J.M., Hedia, H., Legros, W., Nicolet, A., J. Appl. Phys. 69, 5794 (1991) CrossRef
Besbes, M., Ren, Z., Razek, A., IEEE Trans. Magn. 32, 1058 (1996) CrossRef
Delaere, K., Heylen, W., Hameyer, K., Belmans, R., J. Magn. Magn. Mater. 226-230, 1226 (2001) CrossRef
Galopin, N., Mininger, X., Bouillault, F., Daniel, L., IEEE Trans. Magn. 44, 834 (2008) CrossRef
IEEE Standard on Piezoelectricity, 1988 (ANSI/IEEE Std. 176-1987)
Hirsinger, L., Billardon, R., IEEE Trans. Magn. 31, 1877 (1995) CrossRef
Besbes, M., Ren, Z., Razek, A., IEEE Trans. Magn. 37, 3324 (2001) CrossRef
Azoum, K., Besbes, M., Bouillault, F., Ueno, T., Eur. Phys. J. Appl. Phys. 36, 43 (2006) CrossRef
Ossart, F., Ionita, V., Eur. Phys. J. Appl. Phys. 5, 63 (1999) CrossRef