Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T04:00:50.609Z Has data issue: false hasContentIssue false

Pre-clinical Pharmacology of Atypical Antipsychotic Drugs: A Selective Review

Published online by Cambridge University Press:  06 August 2018

Herbert Y. Meltzer*
Affiliation:
Case Western Reserve University School of Medicine, University Hospitals, Cleveland, USA
*
Professor Herbert Y. Meltzer, University Hospitals of Cleveland, Hanna Pavilion, Room B-68, 11100 Euclid Avenue, Cleveland, OH, 44106-5000, USA

Extract

The primary basis for the action of neuroleptic drugs has been suggested to be a blockade of D2 receptors in the mesolimbic system, with subsequent decrease in the firing rate of ventral tegmental (A10) dopamine neurons by the process of depolarisation inactivation (Matthyssee, 1974; Bunney et al, 1991). The main evidence for this hypothesis is that: the affinities for the D2 receptor of all effective antipsychotic drugs are positively correlated with their average clinical dose (Seeman & Lee, 1975; Creese et al, 1976); and chronic administration of antipsychotic drugs produces nearly complete inhibition of the firing of ventral tegmental (A10) dopamine neurons that project to the limbic forebrain (Chiodo & Bunney, 1983). Clozapine, the prototypical atypical antipsychotic drug, also satisfies both criteria (Seeman & Lee, 1975; Chiodo & Bunney, 1985). However, the demonstration that clozapine is more effective than other neuroleptics for the treatment of both schizophrenic patients who are responsive to typical neuroleptics (Meltzer, 1992) as well as those who are resistant (Kane et al, 1988) suggests that this simple dopamine hypothesis of neuroleptic drug action is insufficient. Indeed, there is evidence that clozapine at clinically effective doses produces less D2 receptor occupancy and, hence, less antagonism of D2 receptors in the striatum, and probably also in the limbic system, than typical neuroleptic drugs (Farde et al, 1992); this further challenges the adequacy of the dopamine hypothesis to explain the greater efficacy of clozapine. This leaves the need to consider what else besides a D2 receptor blockade may explain the action of clozapine and, indeed, whether limited blockade is superior to a more complete one.

Type
Research Article
Copyright
Copyright © 1996 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altar, C. A., Wasley, A. M., Neale, R. F., et al (1986) Typical and atypical antipsychotic occupancy of D2 and S2 receptors: an autoradiographic analysis in rat brain. Brain Research Bulletin, 16, 517525.CrossRefGoogle ScholarPubMed
Andersen, P. H. & Braestrup, C. (1986) Evidence for different states of the dopamine D1 receptor: clozapine and fluperlapine may preferentially label an adenylate cyclase-coupled state of the D1 receptor. Journal of Neurochemistry, 47, 18221831.CrossRefGoogle ScholarPubMed
Andree, T. H., Mikuni, M., Tong, C. Y., et al (1986) Differential effect of subchronic treatment with various neuroleptic agents on serotonin2 receptors in rat cerebral cortex. Journal of Neurochemistry, 46, 191197.CrossRefGoogle ScholarPubMed
Ashby, C. R. Jr, Minabe, Y., Edwards, I., et al (1991) Comparison of the effects of various typical and atypical antipsychotic drugs on the suppressant action of 2-methyl-serotonin on medial prefrontal cortical cells in the rat. Synapse, 8, 155161.CrossRefGoogle Scholar
Balsara, J. J., Jaelhav, J. H. & Chandorkar, A. G. (1979) Effect of drugs influencing central serotonergic mechanisms or haloperidol-induced catalepsy. Psychopharmacology, 22, 6769.CrossRefGoogle Scholar
Bersani, G., Grispini, A., Marini, S., et al (1986) Neuroleptic-induced extrapyramidal side effects: clinical perspectives with ritanserin (R35667), a new selective 5-HT2 receptor blocking agent. Current Therapeutic Research, 40, 492499.Google Scholar
Blandina, P., Goldfarb, J., Craddock-Royal, B., et al (1989) Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. Journal of Pharmacology and Experimental Therapeutics, 251, 803809.Google ScholarPubMed
Borison, R. L., Diamond, B. I., Pathiraja, A. P., et al (1992) Clinical overview of risperidone. In Novel Antipsychotic Drugs (ed. Meltzer, H. Y.), pp. 233239. New York: Raven Press,Google Scholar
Bunney, B. S., Chiodo, L. A. & Grace, A. A. (1991) Midbrain dopamine system electrophysiological functioning: a review and hypothesis. Synapse, 9, 7994.CrossRefGoogle ScholarPubMed
Canton, H., Verrièle, L. & Colpaert, F. C. (1990) Binding of typical and atypical antipsychotics to 5-HT1C and 5-HT2 sites: clozapine potently interacts with 5-HT1C sites. European Journal of Pharmacology, 191, 9396.CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Bunney, B. S. (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. Journal of Neuroscience, 3, 16071619.CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Bunney, B. S. (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. Journal of Neuroscience, 5, 25252544.CrossRefGoogle ScholarPubMed
Chouinard, G., Jones, B., Remington, G., et al (1993) A Canadian multicenter placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic schizophrenic patients. Journal of Clinical Psychopharmacology, 13, 2540.CrossRefGoogle ScholarPubMed
Corbett, R., Hartman, H., Kerman, L. L., et al (1993) Effects of atypical antipsychotic agents on social behavior in rodents. Pharmacology, Biochemistry and Behavior, 45, 917.CrossRefGoogle ScholarPubMed
Costall, B. & Naylor, R. J. (1973) Neuroleptic interactions with the serotonergic–dopaminergic mechanisms in the nucleus accumbens. Journal of Pharmacy and Pharmacology, 30, 257259.CrossRefGoogle Scholar
Creese, I., Burt, D. R. & Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs. Science, 192, 481483.CrossRefGoogle Scholar
Daly, S. A. & Waddington, J. L. (1993) Behavioural effects of the putative D-3 dopamine receptor agonist 7-OH-DPAT in relation to other “D-2-like” agonists. Neuropharmacology, 32, 509510.CrossRefGoogle ScholarPubMed
Duinkerke, S. J., Botter, P. A., Jansen, A. A., et al (1993) Ritanserin, a selective 5-HT2/1C antagonist, and negative symptoms in schizophrenia: a placebo-controlled double-blind trial. British Journal of Psychiatry, 163, 451454.CrossRefGoogle ScholarPubMed
Farde, L., Nordström, A. L., Wiesel, F. A., et al (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Archives of General Psychiatry, 49, 538544.CrossRefGoogle ScholarPubMed
Gelders, Y. G., Heylen, S. L., Vanden-Bussche, G., et al (1990) Pilot clinical investigation of risperidone in the treatment of psychotic patients. Pharmacopsychiatry, 23, 206211.CrossRefGoogle ScholarPubMed
Goff, D. C., Midha, K. K., Brotman, A. W., et al (1991) An open trial of buspirone added to neuroleptics in schizophrenic patients. Journal of Clinical Psychopharmacology, 11, 193197.CrossRefGoogle ScholarPubMed
Goldstein, J. M., Litwin, L. C., Sutton, E. B., et al (1989) Effects of ICI 169,369, a selective serotonin antagonist in electrophysiological tests predictive of antipsychotic activity. Journal of Pharmacology and Experimental Therapeutics, 249, 673680.Google ScholarPubMed
Goldstein, J. M., Litwin, L. C., Sutton, E. B., et al (1993) Seroquel: electrophysiological profile of a potential atypical antipsychotic. Psychopharmacology, 112, 293298.CrossRefGoogle ScholarPubMed
Goyer, P. F., Berridge, M. S., Semple, W. E., et al (1993) Dopamine2 and serotonin2 receptor indices in clozapine treated schizophrenic patients. Schizophrenia Research, 9, 199.Google Scholar
Hicks, P. B. (1990) The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sciences, 47, 16091615.CrossRefGoogle ScholarPubMed
Hoenicke, E. M., Vanecek, S. A. & Woods, J. H. (1992) The discriminative stimulus effects of clozapine in pigeons: involvement of 5-hydroxytryptamine1c and 5-hydroxytryptamine2 receptors. Journal of Pharmacology and Experimental Therapeutics, 263, 276284.Google ScholarPubMed
Ichikawa, J. & Meltzer, H. Y. (1991) Differential effects of repeated treatment with haloperidol and clozapine on dopamine release and metabolism in the striatum and the nucleus accumbens. Journal of Pharmacology and Experimental Therapeutics, 256, 348357.Google ScholarPubMed
Imperato, A. & Angelucci, L. (1989) The effect of clozapine and fluperlapine on the in vivo release and metabolism of dopamine in the striatum and in the frontal cortex of freely-moving rats. Psychopharmacology Bulletin, 25, 383389.Google ScholarPubMed
Kahn, R. S., Siever, L., Davidson, M., et al (1993) Haloperidol and clozapine treatment and their effect on m-chlorophenylpi-perazine-mediated responses in schizophrenia: implications for the mechanism of action of clozapine. Psychopharmacology, 112 (suppl.), S90–S94.CrossRefGoogle ScholarPubMed
Kane, J., Honigfeld, G., Singer, J., et al (1988) Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Archives of General Psychiatry, 45, 789796.CrossRefGoogle ScholarPubMed
Korsgaard, S., Gerlach, J. & Christensson, E. (1985) Behavioral aspects of serotonin–dopamine interactions in the monkey. European Journal of Pharmacology, 118, 245252.CrossRefGoogle ScholarPubMed
Krupp, P. & Barnes, P. (1989) Leponex-associated granulocytopenia: a review of the situation. Psychopharmacology, 99 (suppl.), S118–S121.CrossRefGoogle ScholarPubMed
Kuoppamäki, M., Seppälä, T., Syvälahti, E., et al (1993) Chronic clozapine treatment decreases 5-hydroxytryptamine1C receptor density in the rat choroid plexus: comparison with haloperidol. Journal of Pharmacology and Experimental Therapeutics, 264, 12621267.Google ScholarPubMed
Lee, T. & Tang, S. W. (1984) Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Research, 12, 277285.CrossRefGoogle Scholar
Leysen, J. E., Gommeren, W., Eens, A., et al (1988) Biochemical profile of risperidone, a new antipsychotic. Journal of Pharmacology and Experimental Therapeutics, 247, 661670.Google ScholarPubMed
Leysen, J. E., Janssen, P. M. F., Schotte, A., et al (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5-HT2 receptors. Psychopharmacology, 112 (suppl.), S40–S54.Google ScholarPubMed
Mason, S. L. & Reynolds, G. P. (1992) Clozapine has submicromolecular affinity for 5-HT1A receptors in human brain tissue. European Journal of Pharmacology, 221, 397398.CrossRefGoogle Scholar
Matsubara, S. & Meltzer, H. Y. (1989) Effect of typical and atypical antipsychotic drugs on 5-HT2 receptor density in rat cerebral cortex. Life Sciences, 45, 13971406.CrossRefGoogle ScholarPubMed
Matsubara, S., Matsubara, R., Kusumi, I., et al (1993) Dopamine D1, D2 and serotonin2 receptor occupation by typical and atypical antipsychotic drugs in vivo. Journal of Pharmacology and Experimental Therapeutics, 265, 498508.Google ScholarPubMed
Matthyssee, S. (1974) Dopamine and the pharmacology of schizophrenia: the state of the evidence. Journal of Psychiatry Research, 11, 107113.CrossRefGoogle Scholar
Megens, A. A. H. P., Awouters, F. H. L., Schotte, A., et al (1994) Survey on the pharmacodynamics of the new antipsychotic risperidone. Psychopharmacology, 114, 923.CrossRefGoogle ScholarPubMed
Meltzer, H. Y. (1988) Clozapine: clinical advantages and biological mechanisms. In Schizophrenia: A Scientific Focus (eds Schulz, S. C. & Tamminga, C. A.), pp. 302309. New York: Oxford University Press.Google Scholar
Meltzer, H. Y. (1990) Clozapine: mechanism of action in relation to its clinical advantages. In Recent Advances in Schizophrenia (eds Kales, A., Stefanos, G. N. & Talbott, J. A.), pp. 237246. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Meltzer, H. Y. (1991a) Dopaminergic and serotonergic mechanisms in the action of clozapine. In Advances in Neuropsychiatry and Psychopharmacology. Vol. 1: Schizophrenia Research (eds Schulz, S. C. & Tamminga, C. A.), pp. 333340. New York: Raven Press.Google Scholar
Meltzer, H. Y. (1991b) The mechanism of action of novel antipsychotic drugs. Schizophrenia Bulletin, 17, 263287.CrossRefGoogle ScholarPubMed
Meltzer, H. Y. (1992) Treatment of the neuroleptic-nonresponsive schizophrenic patient. Schizophrenia Bulletin, 18, 515542.CrossRefGoogle ScholarPubMed
Meltzer, H. Y. (1995) The concept of atypical antipsychotics. In Advances in the Neurobiology of Schizophrenia (eds den Boer, J. A., Westenberg, H. G. M. & van Pragg, H. M.), pp. 265273. Chichester: Wiley.Google Scholar
Meltzer, H. Y., Matsubara, S. & Lee, J.-C. (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. Journal of Pharmacology and Experimental Therapeutics, 252, 238246.Google Scholar
Meltzer, H. Y. & Nash, J. F. (1991) Effects of antipsychotic drugs on serotonin receptors. Pharmacology Reviews, 43, 587604.Google ScholarPubMed
Meltzer, H. Y., Zhang, Y. & Stockmeier, C. A. (1992) Effects of amperozide on rat cortical 5-HT2 and striatal and limbic dopamine D2 receptor occupancy: implications for antipsychotic action. European Journal of Pharmacology, 216, 6771.CrossRefGoogle ScholarPubMed
Meltzer, H. Y., Maes, M. & Lee, M. A. (1993) The cimetidine-induced increase in prolactin secretion in schizophrenia: effect of clozapine. Psychopharmacology, 112 (suppl.), S95–S104.CrossRefGoogle ScholarPubMed
Meltzer, H. Y., Chai, B. L., Thompson, P. A., et al (1994) Effect of scopolamine on the efflux of dopamine and its metabolites following clozapine, haloperidol or thioridazine. Journal of Pharmacology and Experimental Therapeutics, 268, 14521461.Google ScholarPubMed
Meltzer, H. Y., Yamamoto, B. K., Lowy, M. T., et al (1995) The mechanism of action of atypical antipsychotic drugs: an update. In Biology of Schizophrenia and Affective Disease–ARNMD Series (eds Watson, S. J. & Akil, H.), pp. 451492. New York: Raven Press.Google Scholar
Migler, B. M., Warawa, E. J. & Malik, J. B. (1993) Seroquel: Behavioral effects in conventional and novel tests for atypical antipsychotic drug. Psychopharmacology, 112, 299307.CrossRefGoogle ScholarPubMed
Millan, M. J., Gobert, A., Laruelle, G., et al (1993) Potential antidepressive and antipsychotic properties of the high efficacy methoxynapthylpiperazine 5-HT1A agonists, S14506 and S14671. Neuroscience Abstracts, 19, 597.Google Scholar
Moghaddam, B. & Bunney, B. S. (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. Journal of Neurochemistry, 54, 1775–1760.Google ScholarPubMed
Molineaux, S. M., Jessell, T. M., Axel, R., et al (1989) 5-HT1C receptor in a prominent serotonin receptor subtype in the central nervous system. Proceedings of the National Academy of Science, USA, 89, 67936797.CrossRefGoogle Scholar
Monsma, F. J. Jr, Shen, Y., Ward, R. R., et al (1993) Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Molecular Pharmacology, 43, 320327.Google ScholarPubMed
Nash, J. F. (1990) Ketanserin pretreatment attenuates NDMA-induced dopamine release in the striatum as measured by in vivo microdialysis. Life Sciences, 47, 24022408 Google Scholar
Neal-Beliveau, B. S., Joyce, J. N. & Lucki, I. (1993) Serotonergic involvement in haloperidol-induced catalepsy. Journal of Pharmacology and Experimental Therapeutics, 265, 207217.Google ScholarPubMed
O'Dell, S., La Hoste, G. J., Widwark, C. B., et al (1990) Chronic treatment with clozapine or haloperidol differentially regulates dopamine and serontonin receptor in rat brain. Synapse, 6, 146153.CrossRefGoogle ScholarPubMed
Owens, R. R. Jr, Gutierrez-Esteinou, R., Hsaio, J., et al (1993) Effect of clozapine and fluphenazine treatment on responses to m-chlorophenylpiperazine infusions in schizophrenia. Archives of General Psychiatry, 50, 636644.CrossRefGoogle Scholar
Pehek, E. A., Yamamoto, B. K. & Meltzer, H. Y. (1991) The effects of clozapine on dopamine, 5-HT and glutamate release in the rat medial prefrontal cortex. Schizophrenia Research, 4, 324.CrossRefGoogle Scholar
Rao, T. S., Contreras, P. C., Cler, J. A., et al (1991) Clozapine attenuates n-methyl-D-aspartate receptor complex-mediated responses in vivo: tentative evidence for a functional modulation by a noradrenergic mechanism. Neuropharmacology, 30, 557565.Google ScholarPubMed
Rivest, J. M., Audenot, V., Gobert, A., et al (1993) Actions of the potent methoxy-napthylpiperazine 5-HT1A receptor agonists S14506 and S14671 at dopamine D1, D2 and D3 receptors in vitro and in vivo. Neuroscience Abstracts, 10, 597.Google Scholar
Rogue, A. & Rogue, P. (1992) Mianserin in the management of schizophrenia. Schizophrenia 1992, International Conference Abstract Book, p. 125. Vancouver, British Columbia.Google Scholar
Roth, B. I., Ciaranello, R. D. & Meltzer, H. Y. (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. Journal of Pharmacology and Experimental Therapeutics, 260, 13611365.Google ScholarPubMed
Roth, B. I., Craigo, S. C., Choudhary, M. S., et al (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine6 and 5-hydroxtryptamine7 receptors. Journal of Pharmacology and Experimental Therapeutics, 268, 14061410.Google Scholar
Saller, C. F. & Salama, A. I. (1993) Seroquel: biochemical profile of a potential atypical antipsychotic. Psychopharmacology, 112, 285292.CrossRefGoogle ScholarPubMed
Schmidt, C. J., Abbate, G. M., Black, C. K., et al (1990) Selective 5-hydroxytryptamine2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats. Journal of Pharmacology and Experimental Therapeutics, 255, 478483.Google ScholarPubMed
Schmidt, C. J., Taylor, V. L., Abbate, G. M., et al (1991) 5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine. European Journal of Pharmacology, 223, 6574.CrossRefGoogle Scholar
Schmidt, C. J., Fadayel, G., Sullivan, C. K., et al (1992) 5-HT2 receptors exert a state dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. European Journal of Pharmacology, 223, 6574.CrossRefGoogle Scholar
Schotte, AS., de Bruyckere, K., Janssen, P. F., et al (1989) Receptor occupancy by ritanserin and risperidone measured using ex vivo radiography. Brain Research, 500, 295301.Google ScholarPubMed
Seeman, P. & Lee, T. (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science, 188, 12171219.CrossRefGoogle ScholarPubMed
Shen, Y., Monsma, F. J. Jr, Metcalf, M. A., et al (1993) Molecular cloning and expression of a 5-hydroxytryptamine serotonin receptor subtype. Journal of Biology and Chemistry, 268, 1820018204.CrossRefGoogle ScholarPubMed
Skarsfeldt, T. & Perregard, J. (1990) Sertindole, a new neuroleptic with extreme selectivity on A10 versus A9 dopamine neurons in the rat. European Journal of Pharmacology, 182, 613614.CrossRefGoogle ScholarPubMed
Sorensen, S. M., Humphreys, T. M., Taylor, V. L., et al (1992) 5-HT2 antagonists reverse amphetamine-induced slowing of dopaminergic neurons by interfering with stimulated dopamine synthesis. Journal of Pharmacology and Experimental Therapeutics, 260, 872878.Google ScholarPubMed
Sorensen, S. M., Kehne, J. H., Fadayel, G. M., et al (1993) Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. Journal of Pharmacology and Experimental Therapeutics, 266, 684691.Google ScholarPubMed
Stockmeier, C. A., Dicarlo, J. J., Zhang, Y., et al (1993) Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy serotonin-2 and dopamine-2 receptors. Journal of Pharmacology and Experimental Therapeutics, 266, 13741384.Google ScholarPubMed
Sumiyoshi, T., Kido, H., Sakamoto, H., et al (1993) Time course of dopamine-D2 and serotonin-5-HT2 receptor occupancy rates by haloperidol and clozapine in vivo. Japanese Journal of Psychiatry and Neurology, 47, 131137.Google ScholarPubMed
Ugedo, L., Grenhoff, J. & Svensson, T. H. (1989) Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology, 98, 4550.CrossRefGoogle ScholarPubMed
Van Tol, H. H., Bunzow, J. R., Guan, H.-E., et al (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature, 350, 610614.CrossRefGoogle ScholarPubMed
Volonté, M., Ceci, A. & Borsini, F. (1992) Effect of haloperidol and clozapine on (+)SKF 10,047-induced dopamine release: role of 5-HT3 receptors. European Journal of Pharmacology, 213, 21632164.CrossRefGoogle Scholar
Wadenberg, M. L., Ahlewnius, S. & Svensson, T. H. (1993) Potency mismatch for behavioral and biochemical effects by dopamine receptor antagonist: implications for the mechanism of action of clozapine. Psychopharmacology, 110, 273279.CrossRefGoogle ScholarPubMed
Wander, T. J., Nelson, A., Okazaki, H., et al (1987) Antagonism by neuroleptics of serotonin 5-HT1A and 5-HT2 receptors of normal human brain in vitro. European Journal of Pharmacology, 143, 279282.CrossRefGoogle ScholarPubMed
Watling, K. J., Beer, M. S., Stanton, J. A., et al (1990) Interaction of the atypical neuroleptic clozapine with 5-HT3 receptors in the cerebral cortex and superior cervical ganglion of the rat. European Journal of Pharmacology, 182, 465472.CrossRefGoogle ScholarPubMed
White, F. J. & Wang, R. Y. (1983) Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat. Life Sciences, 32, 983993.CrossRefGoogle ScholarPubMed
Wiesel, F. A,. Nordström, A.-L., Farde, L., et al (1994) An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacology, 114, 3138.CrossRefGoogle ScholarPubMed
Wiley, J. L. & Porter, J. H. (1992) Serotonergic drugs do not substitute for clozapine in clozapine-trained rats in a two-lever drug discrimination procedure. Pharmacology, Biochemistry and Behavior, 43, 961965.CrossRefGoogle ScholarPubMed
Wilmot, C. A. & Szczepanik, A. M. (1989) Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Research, 487, 288298.CrossRefGoogle ScholarPubMed
Yamamoto, B. K. & Cooperman, M. A. (1992) Effect of chronic antipsychotic treatment of extracellular dopamine and glutamate concentrations in the rat striatum. Society of Neuroscience Abstracts, 18, 379.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.